Step |
Hyp |
Ref |
Expression |
1 |
|
iundisjf.1 |
|
2 |
|
iundisjf.2 |
|
3 |
|
iundisjf.3 |
|
4 |
|
ssrab2 |
|
5 |
|
nnuz |
|
6 |
4 5
|
sseqtri |
|
7 |
|
rabn0 |
|
8 |
7
|
biimpri |
|
9 |
|
infssuzcl |
|
10 |
6 8 9
|
sylancr |
|
11 |
|
nfrab1 |
|
12 |
|
nfcv |
|
13 |
|
nfcv |
|
14 |
11 12 13
|
nfinf |
|
15 |
|
nfcv |
|
16 |
14
|
nfcsb1 |
|
17 |
16
|
nfcri |
|
18 |
|
csbeq1a |
|
19 |
18
|
eleq2d |
|
20 |
14 15 17 19
|
elrabf |
|
21 |
10 20
|
sylib |
|
22 |
21
|
simpld |
|
23 |
21
|
simprd |
|
24 |
22
|
nnred |
|
25 |
24
|
ltnrd |
|
26 |
|
eliun |
|
27 |
|
nfcv |
|
28 |
1
|
nfcri |
|
29 |
27 28
|
nfrex |
|
30 |
28 27
|
nfrabw |
|
31 |
|
nfcv |
|
32 |
|
nfcv |
|
33 |
30 31 32
|
nfinf |
|
34 |
33 32 33
|
nfbr |
|
35 |
24
|
ad2antrr |
|
36 |
|
elfzouz |
|
37 |
36 5
|
eleqtrrdi |
|
38 |
37
|
ad2antlr |
|
39 |
38
|
nnred |
|
40 |
|
simpr |
|
41 |
|
nfcv |
|
42 |
2
|
nfcri |
|
43 |
3
|
eleq2d |
|
44 |
41 15 42 43
|
elrabf |
|
45 |
38 40 44
|
sylanbrc |
|
46 |
|
infssuzle |
|
47 |
6 45 46
|
sylancr |
|
48 |
|
elfzolt2 |
|
49 |
48
|
ad2antlr |
|
50 |
35 39 35 47 49
|
lelttrd |
|
51 |
50
|
exp31 |
|
52 |
29 34 51
|
rexlimd |
|
53 |
26 52
|
syl5bi |
|
54 |
25 53
|
mtod |
|
55 |
23 54
|
eldifd |
|
56 |
|
csbeq1 |
|
57 |
33
|
nfeq2 |
|
58 |
|
nfcv |
|
59 |
|
nfcv |
|
60 |
|
nfcv |
|
61 |
59 60 33
|
nfov |
|
62 |
|
oveq2 |
|
63 |
|
eqidd |
|
64 |
57 58 61 62 63
|
iuneq12df |
|
65 |
56 64
|
difeq12d |
|
66 |
65
|
eleq2d |
|
67 |
66
|
rspcev |
|
68 |
22 55 67
|
syl2anc |
|
69 |
|
nfv |
|
70 |
|
nfcsb1v |
|
71 |
|
nfcv |
|
72 |
71 2
|
nfiun |
|
73 |
70 72
|
nfdif |
|
74 |
73
|
nfcri |
|
75 |
|
csbeq1a |
|
76 |
|
oveq2 |
|
77 |
76
|
iuneq1d |
|
78 |
75 77
|
difeq12d |
|
79 |
78
|
eleq2d |
|
80 |
69 74 79
|
cbvrexw |
|
81 |
68 80
|
sylibr |
|
82 |
|
eldifi |
|
83 |
82
|
reximi |
|
84 |
81 83
|
impbii |
|
85 |
|
eliun |
|
86 |
|
eliun |
|
87 |
84 85 86
|
3bitr4i |
|
88 |
87
|
eqriv |
|