Metamath Proof Explorer


Theorem iundomg

Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses iunfo.1 T = x A x × B
iundomg.2 φ x A C B AC _ A
iundomg.3 φ x A B C
iundomg.4 φ A × C AC _ x A B
Assertion iundomg φ x A B A × C

Proof

Step Hyp Ref Expression
1 iunfo.1 T = x A x × B
2 iundomg.2 φ x A C B AC _ A
3 iundomg.3 φ x A B C
4 iundomg.4 φ A × C AC _ x A B
5 1 2 3 iundom2g φ T A × C
6 acndom2 T A × C A × C AC _ x A B T AC _ x A B
7 5 4 6 sylc φ T AC _ x A B
8 1 iunfo 2 nd T : T onto x A B
9 fodomacn T AC _ x A B 2 nd T : T onto x A B x A B T
10 7 8 9 mpisyl φ x A B T
11 domtr x A B T T A × C x A B A × C
12 10 5 11 syl2anc φ x A B A × C