Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iuneq1
Next ⟩
iineq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
iuneq1
Description:
Equality theorem for indexed union.
(Contributed by
NM
, 27-Jun-1998)
Ref
Expression
Assertion
iuneq1
⊢
A
=
B
→
⋃
x
∈
A
C
=
⋃
x
∈
B
C
Proof
Step
Hyp
Ref
Expression
1
iunss1
⊢
A
⊆
B
→
⋃
x
∈
A
C
⊆
⋃
x
∈
B
C
2
iunss1
⊢
B
⊆
A
→
⋃
x
∈
B
C
⊆
⋃
x
∈
A
C
3
1
2
anim12i
⊢
A
⊆
B
∧
B
⊆
A
→
⋃
x
∈
A
C
⊆
⋃
x
∈
B
C
∧
⋃
x
∈
B
C
⊆
⋃
x
∈
A
C
4
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
5
eqss
⊢
⋃
x
∈
A
C
=
⋃
x
∈
B
C
↔
⋃
x
∈
A
C
⊆
⋃
x
∈
B
C
∧
⋃
x
∈
B
C
⊆
⋃
x
∈
A
C
6
3
4
5
3imtr4i
⊢
A
=
B
→
⋃
x
∈
A
C
=
⋃
x
∈
B
C