Metamath Proof Explorer


Theorem iuneq1

Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iuneq1 A = B x A C = x B C

Proof

Step Hyp Ref Expression
1 iunss1 A B x A C x B C
2 iunss1 B A x B C x A C
3 1 2 anim12i A B B A x A C x B C x B C x A C
4 eqss A = B A B B A
5 eqss x A C = x B C x A C x B C x B C x A C
6 3 4 5 3imtr4i A = B x A C = x B C