Metamath Proof Explorer


Theorem iuneq12daf

Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypotheses iuneq12daf.1 x φ
iuneq12daf.2 _ x A
iuneq12daf.3 _ x B
iuneq12daf.4 φ A = B
iuneq12daf.5 φ x A C = D
Assertion iuneq12daf φ x A C = x B D

Proof

Step Hyp Ref Expression
1 iuneq12daf.1 x φ
2 iuneq12daf.2 _ x A
3 iuneq12daf.3 _ x B
4 iuneq12daf.4 φ A = B
5 iuneq12daf.5 φ x A C = D
6 5 eleq2d φ x A y C y D
7 1 6 rexbida φ x A y C x A y D
8 2 3 rexeqf A = B x A y D x B y D
9 4 8 syl φ x A y D x B y D
10 7 9 bitrd φ x A y C x B y D
11 10 alrimiv φ y x A y C x B y D
12 abbi1 y x A y C x B y D y | x A y C = y | x B y D
13 df-iun x A C = y | x A y C
14 df-iun x B D = y | x B y D
15 12 13 14 3eqtr4g y x A y C x B y D x A C = x B D
16 11 15 syl φ x A C = x B D