Metamath Proof Explorer


Theorem iuneq12df

Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses iuneq12df.1 x φ
iuneq12df.2 _ x A
iuneq12df.3 _ x B
iuneq12df.4 φ A = B
iuneq12df.5 φ C = D
Assertion iuneq12df φ x A C = x B D

Proof

Step Hyp Ref Expression
1 iuneq12df.1 x φ
2 iuneq12df.2 _ x A
3 iuneq12df.3 _ x B
4 iuneq12df.4 φ A = B
5 iuneq12df.5 φ C = D
6 5 eleq2d φ y C y D
7 1 2 3 4 6 rexeqbid φ x A y C x B y D
8 7 alrimiv φ y x A y C x B y D
9 abbi1 y x A y C x B y D y | x A y C = y | x B y D
10 df-iun x A C = y | x A y C
11 df-iun x B D = y | x B y D
12 9 10 11 3eqtr4g y x A y C x B y D x A C = x B D
13 8 12 syl φ x A C = x B D