Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iuneq2
Next ⟩
iineq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
iuneq2
Description:
Equality theorem for indexed union.
(Contributed by
NM
, 22-Oct-2003)
Ref
Expression
Assertion
iuneq2
⊢
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
⋃
x
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
ss2iun
⊢
∀
x
∈
A
B
⊆
C
→
⋃
x
∈
A
B
⊆
⋃
x
∈
A
C
2
ss2iun
⊢
∀
x
∈
A
C
⊆
B
→
⋃
x
∈
A
C
⊆
⋃
x
∈
A
B
3
1
2
anim12i
⊢
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
→
⋃
x
∈
A
B
⊆
⋃
x
∈
A
C
∧
⋃
x
∈
A
C
⊆
⋃
x
∈
A
B
4
eqss
⊢
B
=
C
↔
B
⊆
C
∧
C
⊆
B
5
4
ralbii
⊢
∀
x
∈
A
B
=
C
↔
∀
x
∈
A
B
⊆
C
∧
C
⊆
B
6
r19.26
⊢
∀
x
∈
A
B
⊆
C
∧
C
⊆
B
↔
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
7
5
6
bitri
⊢
∀
x
∈
A
B
=
C
↔
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
8
eqss
⊢
⋃
x
∈
A
B
=
⋃
x
∈
A
C
↔
⋃
x
∈
A
B
⊆
⋃
x
∈
A
C
∧
⋃
x
∈
A
C
⊆
⋃
x
∈
A
B
9
3
7
8
3imtr4i
⊢
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
⋃
x
∈
A
C