Metamath Proof Explorer


Theorem iuneq2df

Description: Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iuneq2df.1 x φ
iuneq2df.2 φ x A B = C
Assertion iuneq2df φ x A B = x A C

Proof

Step Hyp Ref Expression
1 iuneq2df.1 x φ
2 iuneq2df.2 φ x A B = C
3 2 ex φ x A B = C
4 1 3 ralrimi φ x A B = C
5 iuneq2 x A B = C x A B = x A C
6 4 5 syl φ x A B = x A C