Metamath Proof Explorer


Theorem iuneq2dv

Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004)

Ref Expression
Hypothesis iuneq2dv.1 φ x A B = C
Assertion iuneq2dv φ x A B = x A C

Proof

Step Hyp Ref Expression
1 iuneq2dv.1 φ x A B = C
2 1 ralrimiva φ x A B = C
3 iuneq2 x A B = C x A B = x A C
4 2 3 syl φ x A B = x A C