Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iuneqconst
Next ⟩
iuniin
Metamath Proof Explorer
Ascii
Unicode
Theorem
iuneqconst
Description:
Indexed union of identical classes.
(Contributed by
AV
, 5-Mar-2024)
Ref
Expression
Hypothesis
iuneqconst.p
⊢
x
=
X
→
B
=
C
Assertion
iuneqconst
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
C
Proof
Step
Hyp
Ref
Expression
1
iuneqconst.p
⊢
x
=
X
→
B
=
C
2
eliun
⊢
y
∈
⋃
x
∈
A
B
↔
∃
x
∈
A
y
∈
B
3
1
eleq2d
⊢
x
=
X
→
y
∈
B
↔
y
∈
C
4
3
rspcev
⊢
X
∈
A
∧
y
∈
C
→
∃
x
∈
A
y
∈
B
5
4
adantlr
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
∧
y
∈
C
→
∃
x
∈
A
y
∈
B
6
5
ex
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
y
∈
C
→
∃
x
∈
A
y
∈
B
7
nfv
⊢
Ⅎ
x
X
∈
A
8
nfra1
⊢
Ⅎ
x
∀
x
∈
A
B
=
C
9
7
8
nfan
⊢
Ⅎ
x
X
∈
A
∧
∀
x
∈
A
B
=
C
10
nfv
⊢
Ⅎ
x
y
∈
C
11
rsp
⊢
∀
x
∈
A
B
=
C
→
x
∈
A
→
B
=
C
12
eleq2
⊢
B
=
C
→
y
∈
B
↔
y
∈
C
13
12
biimpd
⊢
B
=
C
→
y
∈
B
→
y
∈
C
14
11
13
syl6
⊢
∀
x
∈
A
B
=
C
→
x
∈
A
→
y
∈
B
→
y
∈
C
15
14
adantl
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
x
∈
A
→
y
∈
B
→
y
∈
C
16
9
10
15
rexlimd
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
∃
x
∈
A
y
∈
B
→
y
∈
C
17
6
16
impbid
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
y
∈
C
↔
∃
x
∈
A
y
∈
B
18
2
17
bitr4id
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
y
∈
⋃
x
∈
A
B
↔
y
∈
C
19
18
eqrdv
⊢
X
∈
A
∧
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
C