Metamath Proof Explorer


Theorem iuneqconst

Description: Indexed union of identical classes. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis iuneqconst.p x = X B = C
Assertion iuneqconst X A x A B = C x A B = C

Proof

Step Hyp Ref Expression
1 iuneqconst.p x = X B = C
2 eliun y x A B x A y B
3 1 eleq2d x = X y B y C
4 3 rspcev X A y C x A y B
5 4 adantlr X A x A B = C y C x A y B
6 5 ex X A x A B = C y C x A y B
7 nfv x X A
8 nfra1 x x A B = C
9 7 8 nfan x X A x A B = C
10 nfv x y C
11 rsp x A B = C x A B = C
12 eleq2 B = C y B y C
13 12 biimpd B = C y B y C
14 11 13 syl6 x A B = C x A y B y C
15 14 adantl X A x A B = C x A y B y C
16 9 10 15 rexlimd X A x A B = C x A y B y C
17 6 16 impbid X A x A B = C y C x A y B
18 2 17 bitr4id X A x A B = C y x A B y C
19 18 eqrdv X A x A B = C x A B = C