Metamath Proof Explorer


Theorem iuneqfzuz

Description: If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis iuneqfzuz.z Z = N
Assertion iuneqfzuz m Z n = N m A = n = N m B n Z A = n Z B

Proof

Step Hyp Ref Expression
1 iuneqfzuz.z Z = N
2 1 iuneqfzuzlem m Z n = N m A = n = N m B n Z A n Z B
3 eqcom n = N m A = n = N m B n = N m B = n = N m A
4 3 ralbii m Z n = N m A = n = N m B m Z n = N m B = n = N m A
5 4 biimpi m Z n = N m A = n = N m B m Z n = N m B = n = N m A
6 1 iuneqfzuzlem m Z n = N m B = n = N m A n Z B n Z A
7 5 6 syl m Z n = N m A = n = N m B n Z B n Z A
8 2 7 eqssd m Z n = N m A = n = N m B n Z A = n Z B