Metamath Proof Explorer


Theorem iuneqfzuzlem

Description: Lemma for iuneqfzuz : here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis iuneqfzuzlem.z Z = N
Assertion iuneqfzuzlem m Z n = N m A = n = N m B n Z A n Z B

Proof

Step Hyp Ref Expression
1 iuneqfzuzlem.z Z = N
2 nfcv _ m A
3 nfcsb1v _ n m / n A
4 csbeq1a n = m A = m / n A
5 2 3 4 cbviun n Z A = m Z m / n A
6 5 eleq2i x n Z A x m Z m / n A
7 eliun x m Z m / n A m Z x m / n A
8 6 7 bitri x n Z A m Z x m / n A
9 8 biimpi x n Z A m Z x m / n A
10 9 adantl m Z n = N m A = n = N m B x n Z A m Z x m / n A
11 nfra1 m m Z n = N m A = n = N m B
12 nfv m x n Z B
13 simp2 m Z n = N m A = n = N m B m Z x m / n A m Z
14 rspa m Z n = N m A = n = N m B m Z n = N m A = n = N m B
15 14 3adant3 m Z n = N m A = n = N m B m Z x m / n A n = N m A = n = N m B
16 simp3 m Z n = N m A = n = N m B m Z x m / n A x m / n A
17 id n = N m A = n = N m B n = N m A = n = N m B
18 fzssuz N m N
19 1 eqcomi N = Z
20 18 19 sseqtri N m Z
21 iunss1 N m Z n = N m B n Z B
22 20 21 mp1i n = N m A = n = N m B n = N m B n Z B
23 17 22 eqsstrd n = N m A = n = N m B n = N m A n Z B
24 23 3ad2ant2 m Z n = N m A = n = N m B x m / n A n = N m A n Z B
25 1 eleq2i m Z m N
26 25 biimpi m Z m N
27 eluzel2 m N N
28 26 27 syl m Z N
29 eluzelz m N m
30 26 29 syl m Z m
31 eluzle m N N m
32 26 31 syl m Z N m
33 30 zred m Z m
34 leid m m m
35 33 34 syl m Z m m
36 28 30 30 32 35 elfzd m Z m N m
37 nfcv _ n x
38 37 3 nfel n x m / n A
39 4 eleq2d n = m x A x m / n A
40 38 39 rspce m N m x m / n A n N m x A
41 36 40 sylan m Z x m / n A n N m x A
42 eliun x n = N m A n N m x A
43 41 42 sylibr m Z x m / n A x n = N m A
44 43 3adant2 m Z n = N m A = n = N m B x m / n A x n = N m A
45 24 44 sseldd m Z n = N m A = n = N m B x m / n A x n Z B
46 13 15 16 45 syl3anc m Z n = N m A = n = N m B m Z x m / n A x n Z B
47 46 3exp m Z n = N m A = n = N m B m Z x m / n A x n Z B
48 11 12 47 rexlimd m Z n = N m A = n = N m B m Z x m / n A x n Z B
49 48 adantr m Z n = N m A = n = N m B x n Z A m Z x m / n A x n Z B
50 10 49 mpd m Z n = N m A = n = N m B x n Z A x n Z B
51 50 ralrimiva m Z n = N m A = n = N m B x n Z A x n Z B
52 dfss3 n Z A n Z B x n Z A x n Z B
53 51 52 sylibr m Z n = N m A = n = N m B n Z A n Z B