Step |
Hyp |
Ref |
Expression |
1 |
|
omex |
|
2 |
1
|
0dom |
|
3 |
|
breq1 |
|
4 |
2 3
|
mpbiri |
|
5 |
4
|
a1d |
|
6 |
|
n0 |
|
7 |
|
ne0i |
|
8 |
|
unieq |
|
9 |
|
uni0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
necon3i |
|
12 |
7 11
|
syl |
|
13 |
12
|
adantl |
|
14 |
|
simpl1 |
|
15 |
|
ctex |
|
16 |
|
0sdomg |
|
17 |
14 15 16
|
3syl |
|
18 |
13 17
|
mpbird |
|
19 |
|
fodomr |
|
20 |
18 14 19
|
syl2anc |
|
21 |
|
omelon |
|
22 |
|
onenon |
|
23 |
21 22
|
ax-mp |
|
24 |
|
xpnum |
|
25 |
23 23 24
|
mp2an |
|
26 |
|
simplrr |
|
27 |
|
fof |
|
28 |
26 27
|
syl |
|
29 |
|
simprl |
|
30 |
28 29
|
ffvelrnd |
|
31 |
30
|
adantr |
|
32 |
|
elssuni |
|
33 |
31 32
|
syl |
|
34 |
30 32
|
syl |
|
35 |
|
simpll3 |
|
36 |
|
soss |
|
37 |
34 35 36
|
sylc |
|
38 |
|
simpll2 |
|
39 |
38 30
|
sseldd |
|
40 |
|
finnisoeu |
|
41 |
37 39 40
|
syl2anc |
|
42 |
|
iotacl |
|
43 |
41 42
|
syl |
|
44 |
|
iotaex |
|
45 |
|
isoeq1 |
|
46 |
|
isoeq1 |
|
47 |
46
|
cbvabv |
|
48 |
44 45 47
|
elab2 |
|
49 |
43 48
|
sylib |
|
50 |
|
isof1o |
|
51 |
|
f1of |
|
52 |
49 50 51
|
3syl |
|
53 |
52
|
ffvelrnda |
|
54 |
33 53
|
sseldd |
|
55 |
|
simprl |
|
56 |
55
|
ad2antrr |
|
57 |
54 56
|
ifclda |
|
58 |
57
|
ralrimivva |
|
59 |
|
eqid |
|
60 |
59
|
fmpo |
|
61 |
58 60
|
sylib |
|
62 |
|
eluni |
|
63 |
|
simplrr |
|
64 |
|
simprr |
|
65 |
|
foelrn |
|
66 |
63 64 65
|
syl2anc |
|
67 |
|
simprrl |
|
68 |
|
ordom |
|
69 |
|
simpll2 |
|
70 |
|
simplrr |
|
71 |
70 27
|
syl |
|
72 |
71 67
|
ffvelrnd |
|
73 |
69 72
|
sseldd |
|
74 |
|
ficardom |
|
75 |
73 74
|
syl |
|
76 |
|
ordelss |
|
77 |
68 75 76
|
sylancr |
|
78 |
|
elssuni |
|
79 |
72 78
|
syl |
|
80 |
|
simpll3 |
|
81 |
|
soss |
|
82 |
79 80 81
|
sylc |
|
83 |
|
finnisoeu |
|
84 |
82 73 83
|
syl2anc |
|
85 |
|
iotacl |
|
86 |
84 85
|
syl |
|
87 |
|
iotaex |
|
88 |
|
isoeq1 |
|
89 |
|
isoeq1 |
|
90 |
89
|
cbvabv |
|
91 |
87 88 90
|
elab2 |
|
92 |
86 91
|
sylib |
|
93 |
|
isof1o |
|
94 |
92 93
|
syl |
|
95 |
|
f1ocnv |
|
96 |
|
f1of |
|
97 |
94 95 96
|
3syl |
|
98 |
|
simprll |
|
99 |
|
simprrr |
|
100 |
98 99
|
eleqtrd |
|
101 |
97 100
|
ffvelrnd |
|
102 |
77 101
|
sseldd |
|
103 |
|
2fveq3 |
|
104 |
103
|
eleq2d |
|
105 |
|
isoeq4 |
|
106 |
103 105
|
syl |
|
107 |
|
fveq2 |
|
108 |
|
isoeq5 |
|
109 |
107 108
|
syl |
|
110 |
106 109
|
bitrd |
|
111 |
110
|
iotabidv |
|
112 |
111
|
fveq1d |
|
113 |
104 112
|
ifbieq1d |
|
114 |
|
eleq1 |
|
115 |
|
fveq2 |
|
116 |
114 115
|
ifbieq1d |
|
117 |
|
fvex |
|
118 |
|
vex |
|
119 |
117 118
|
ifex |
|
120 |
113 116 59 119
|
ovmpo |
|
121 |
67 102 120
|
syl2anc |
|
122 |
101
|
iftrued |
|
123 |
|
f1ocnvfv2 |
|
124 |
94 100 123
|
syl2anc |
|
125 |
121 122 124
|
3eqtrrd |
|
126 |
|
rspceov |
|
127 |
67 102 125 126
|
syl3anc |
|
128 |
127
|
expr |
|
129 |
128
|
expd |
|
130 |
129
|
rexlimdv |
|
131 |
66 130
|
mpd |
|
132 |
131
|
ex |
|
133 |
132
|
exlimdv |
|
134 |
62 133
|
syl5bi |
|
135 |
134
|
ralrimiv |
|
136 |
|
foov |
|
137 |
61 135 136
|
sylanbrc |
|
138 |
|
fodomnum |
|
139 |
25 137 138
|
mpsyl |
|
140 |
|
xpomen |
|
141 |
|
domentr |
|
142 |
139 140 141
|
sylancl |
|
143 |
142
|
expr |
|
144 |
143
|
exlimdv |
|
145 |
20 144
|
mpd |
|
146 |
145
|
expcom |
|
147 |
146
|
exlimiv |
|
148 |
6 147
|
sylbi |
|
149 |
5 148
|
pm2.61ine |
|