Metamath Proof Explorer


Theorem iunfictbso

Description: Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion iunfictbso A ω A Fin B Or A A ω

Proof

Step Hyp Ref Expression
1 omex ω V
2 1 0dom ω
3 breq1 A = A ω ω
4 2 3 mpbiri A = A ω
5 4 a1d A = A ω A Fin B Or A A ω
6 n0 A a a A
7 ne0i a A A
8 unieq A = A =
9 uni0 =
10 8 9 eqtrdi A = A =
11 10 necon3i A A
12 7 11 syl a A A
13 12 adantl A ω A Fin B Or A a A A
14 simpl1 A ω A Fin B Or A a A A ω
15 ctex A ω A V
16 0sdomg A V A A
17 14 15 16 3syl A ω A Fin B Or A a A A A
18 13 17 mpbird A ω A Fin B Or A a A A
19 fodomr A A ω b b : ω onto A
20 18 14 19 syl2anc A ω A Fin B Or A a A b b : ω onto A
21 omelon ω On
22 onenon ω On ω dom card
23 21 22 ax-mp ω dom card
24 xpnum ω dom card ω dom card ω × ω dom card
25 23 23 24 mp2an ω × ω dom card
26 simplrr A ω A Fin B Or A a A b : ω onto A f ω g ω b : ω onto A
27 fof b : ω onto A b : ω A
28 26 27 syl A ω A Fin B Or A a A b : ω onto A f ω g ω b : ω A
29 simprl A ω A Fin B Or A a A b : ω onto A f ω g ω f ω
30 28 29 ffvelrnd A ω A Fin B Or A a A b : ω onto A f ω g ω b f A
31 30 adantr A ω A Fin B Or A a A b : ω onto A f ω g ω g card b f b f A
32 elssuni b f A b f A
33 31 32 syl A ω A Fin B Or A a A b : ω onto A f ω g ω g card b f b f A
34 30 32 syl A ω A Fin B Or A a A b : ω onto A f ω g ω b f A
35 simpll3 A ω A Fin B Or A a A b : ω onto A f ω g ω B Or A
36 soss b f A B Or A B Or b f
37 34 35 36 sylc A ω A Fin B Or A a A b : ω onto A f ω g ω B Or b f
38 simpll2 A ω A Fin B Or A a A b : ω onto A f ω g ω A Fin
39 38 30 sseldd A ω A Fin B Or A a A b : ω onto A f ω g ω b f Fin
40 finnisoeu B Or b f b f Fin ∃! h h Isom E , B card b f b f
41 37 39 40 syl2anc A ω A Fin B Or A a A b : ω onto A f ω g ω ∃! h h Isom E , B card b f b f
42 iotacl ∃! h h Isom E , B card b f b f ι h | h Isom E , B card b f b f h | h Isom E , B card b f b f
43 41 42 syl A ω A Fin B Or A a A b : ω onto A f ω g ω ι h | h Isom E , B card b f b f h | h Isom E , B card b f b f
44 iotaex ι h | h Isom E , B card b f b f V
45 isoeq1 a = ι h | h Isom E , B card b f b f a Isom E , B card b f b f ι h | h Isom E , B card b f b f Isom E , B card b f b f
46 isoeq1 h = a h Isom E , B card b f b f a Isom E , B card b f b f
47 46 cbvabv h | h Isom E , B card b f b f = a | a Isom E , B card b f b f
48 44 45 47 elab2 ι h | h Isom E , B card b f b f h | h Isom E , B card b f b f ι h | h Isom E , B card b f b f Isom E , B card b f b f
49 43 48 sylib A ω A Fin B Or A a A b : ω onto A f ω g ω ι h | h Isom E , B card b f b f Isom E , B card b f b f
50 isof1o ι h | h Isom E , B card b f b f Isom E , B card b f b f ι h | h Isom E , B card b f b f : card b f 1-1 onto b f
51 f1of ι h | h Isom E , B card b f b f : card b f 1-1 onto b f ι h | h Isom E , B card b f b f : card b f b f
52 49 50 51 3syl A ω A Fin B Or A a A b : ω onto A f ω g ω ι h | h Isom E , B card b f b f : card b f b f
53 52 ffvelrnda A ω A Fin B Or A a A b : ω onto A f ω g ω g card b f ι h | h Isom E , B card b f b f g b f
54 33 53 sseldd A ω A Fin B Or A a A b : ω onto A f ω g ω g card b f ι h | h Isom E , B card b f b f g A
55 simprl A ω A Fin B Or A a A b : ω onto A a A
56 55 ad2antrr A ω A Fin B Or A a A b : ω onto A f ω g ω ¬ g card b f a A
57 54 56 ifclda A ω A Fin B Or A a A b : ω onto A f ω g ω if g card b f ι h | h Isom E , B card b f b f g a A
58 57 ralrimivva A ω A Fin B Or A a A b : ω onto A f ω g ω if g card b f ι h | h Isom E , B card b f b f g a A
59 eqid f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a = f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a
60 59 fmpo f ω g ω if g card b f ι h | h Isom E , B card b f b f g a A f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω A
61 58 60 sylib A ω A Fin B Or A a A b : ω onto A f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω A
62 eluni c A i c i i A
63 simplrr A ω A Fin B Or A a A b : ω onto A c i i A b : ω onto A
64 simprr A ω A Fin B Or A a A b : ω onto A c i i A i A
65 foelrn b : ω onto A i A j ω i = b j
66 63 64 65 syl2anc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j
67 simprrl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j j ω
68 ordom Ord ω
69 simpll2 A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j A Fin
70 simplrr A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j b : ω onto A
71 70 27 syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j b : ω A
72 71 67 ffvelrnd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j b j A
73 69 72 sseldd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j b j Fin
74 ficardom b j Fin card b j ω
75 73 74 syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j card b j ω
76 ordelss Ord ω card b j ω card b j ω
77 68 75 76 sylancr A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j card b j ω
78 elssuni b j A b j A
79 72 78 syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j b j A
80 simpll3 A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j B Or A
81 soss b j A B Or A B Or b j
82 79 80 81 sylc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j B Or b j
83 finnisoeu B Or b j b j Fin ∃! h h Isom E , B card b j b j
84 82 73 83 syl2anc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ∃! h h Isom E , B card b j b j
85 iotacl ∃! h h Isom E , B card b j b j ι h | h Isom E , B card b j b j h | h Isom E , B card b j b j
86 84 85 syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j h | h Isom E , B card b j b j
87 iotaex ι h | h Isom E , B card b j b j V
88 isoeq1 a = ι h | h Isom E , B card b j b j a Isom E , B card b j b j ι h | h Isom E , B card b j b j Isom E , B card b j b j
89 isoeq1 h = a h Isom E , B card b j b j a Isom E , B card b j b j
90 89 cbvabv h | h Isom E , B card b j b j = a | a Isom E , B card b j b j
91 87 88 90 elab2 ι h | h Isom E , B card b j b j h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j Isom E , B card b j b j
92 86 91 sylib A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j Isom E , B card b j b j
93 isof1o ι h | h Isom E , B card b j b j Isom E , B card b j b j ι h | h Isom E , B card b j b j : card b j 1-1 onto b j
94 92 93 syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j : card b j 1-1 onto b j
95 f1ocnv ι h | h Isom E , B card b j b j : card b j 1-1 onto b j ι h | h Isom E , B card b j b j -1 : b j 1-1 onto card b j
96 f1of ι h | h Isom E , B card b j b j -1 : b j 1-1 onto card b j ι h | h Isom E , B card b j b j -1 : b j card b j
97 94 95 96 3syl A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j -1 : b j card b j
98 simprll A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j c i
99 simprrr A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j i = b j
100 98 99 eleqtrd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j c b j
101 97 100 ffvelrnd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j -1 c card b j
102 77 101 sseldd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j -1 c ω
103 2fveq3 f = j card b f = card b j
104 103 eleq2d f = j g card b f g card b j
105 isoeq4 card b f = card b j h Isom E , B card b f b f h Isom E , B card b j b f
106 103 105 syl f = j h Isom E , B card b f b f h Isom E , B card b j b f
107 fveq2 f = j b f = b j
108 isoeq5 b f = b j h Isom E , B card b j b f h Isom E , B card b j b j
109 107 108 syl f = j h Isom E , B card b j b f h Isom E , B card b j b j
110 106 109 bitrd f = j h Isom E , B card b f b f h Isom E , B card b j b j
111 110 iotabidv f = j ι h | h Isom E , B card b f b f = ι h | h Isom E , B card b j b j
112 111 fveq1d f = j ι h | h Isom E , B card b f b f g = ι h | h Isom E , B card b j b j g
113 104 112 ifbieq1d f = j if g card b f ι h | h Isom E , B card b f b f g a = if g card b j ι h | h Isom E , B card b j b j g a
114 eleq1 g = ι h | h Isom E , B card b j b j -1 c g card b j ι h | h Isom E , B card b j b j -1 c card b j
115 fveq2 g = ι h | h Isom E , B card b j b j -1 c ι h | h Isom E , B card b j b j g = ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c
116 114 115 ifbieq1d g = ι h | h Isom E , B card b j b j -1 c if g card b j ι h | h Isom E , B card b j b j g a = if ι h | h Isom E , B card b j b j -1 c card b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c a
117 fvex ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c V
118 vex a V
119 117 118 ifex if ι h | h Isom E , B card b j b j -1 c card b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c a V
120 113 116 59 119 ovmpo j ω ι h | h Isom E , B card b j b j -1 c ω j f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a ι h | h Isom E , B card b j b j -1 c = if ι h | h Isom E , B card b j b j -1 c card b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c a
121 67 102 120 syl2anc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j j f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a ι h | h Isom E , B card b j b j -1 c = if ι h | h Isom E , B card b j b j -1 c card b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c a
122 101 iftrued A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j if ι h | h Isom E , B card b j b j -1 c card b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c a = ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c
123 f1ocnvfv2 ι h | h Isom E , B card b j b j : card b j 1-1 onto b j c b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c = c
124 94 100 123 syl2anc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j ι h | h Isom E , B card b j b j ι h | h Isom E , B card b j b j -1 c = c
125 121 122 124 3eqtrrd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j c = j f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a ι h | h Isom E , B card b j b j -1 c
126 rspceov j ω ι h | h Isom E , B card b j b j -1 c ω c = j f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a ι h | h Isom E , B card b j b j -1 c d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
127 67 102 125 126 syl3anc A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
128 127 expr A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
129 128 expd A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
130 129 rexlimdv A ω A Fin B Or A a A b : ω onto A c i i A j ω i = b j d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
131 66 130 mpd A ω A Fin B Or A a A b : ω onto A c i i A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
132 131 ex A ω A Fin B Or A a A b : ω onto A c i i A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
133 132 exlimdv A ω A Fin B Or A a A b : ω onto A i c i i A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
134 62 133 syl5bi A ω A Fin B Or A a A b : ω onto A c A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
135 134 ralrimiv A ω A Fin B Or A a A b : ω onto A c A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
136 foov f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω onto A f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω A c A d ω e ω c = d f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a e
137 61 135 136 sylanbrc A ω A Fin B Or A a A b : ω onto A f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω onto A
138 fodomnum ω × ω dom card f ω , g ω if g card b f ι h | h Isom E , B card b f b f g a : ω × ω onto A A ω × ω
139 25 137 138 mpsyl A ω A Fin B Or A a A b : ω onto A A ω × ω
140 xpomen ω × ω ω
141 domentr A ω × ω ω × ω ω A ω
142 139 140 141 sylancl A ω A Fin B Or A a A b : ω onto A A ω
143 142 expr A ω A Fin B Or A a A b : ω onto A A ω
144 143 exlimdv A ω A Fin B Or A a A b b : ω onto A A ω
145 20 144 mpd A ω A Fin B Or A a A A ω
146 145 expcom a A A ω A Fin B Or A A ω
147 146 exlimiv a a A A ω A Fin B Or A A ω
148 6 147 sylbi A A ω A Fin B Or A A ω
149 5 148 pm2.61ine A ω A Fin B Or A A ω