Metamath Proof Explorer


Theorem iunfo

Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 18-Jan-2014)

Ref Expression
Hypothesis iunfo.1 T = x A x × B
Assertion iunfo 2 nd T : T onto x A B

Proof

Step Hyp Ref Expression
1 iunfo.1 T = x A x × B
2 fo2nd 2 nd : V onto V
3 fof 2 nd : V onto V 2 nd : V V
4 ffn 2 nd : V V 2 nd Fn V
5 2 3 4 mp2b 2 nd Fn V
6 ssv T V
7 fnssres 2 nd Fn V T V 2 nd T Fn T
8 5 6 7 mp2an 2 nd T Fn T
9 df-ima 2 nd T = ran 2 nd T
10 1 eleq2i z T z x A x × B
11 eliun z x A x × B x A z x × B
12 10 11 bitri z T x A z x × B
13 xp2nd z x × B 2 nd z B
14 eleq1 2 nd z = y 2 nd z B y B
15 13 14 syl5ib 2 nd z = y z x × B y B
16 15 reximdv 2 nd z = y x A z x × B x A y B
17 12 16 syl5bi 2 nd z = y z T x A y B
18 17 impcom z T 2 nd z = y x A y B
19 18 rexlimiva z T 2 nd z = y x A y B
20 nfiu1 _ x x A x × B
21 1 20 nfcxfr _ x T
22 nfv x 2 nd z = y
23 21 22 nfrex x z T 2 nd z = y
24 ssiun2 x A x × B x A x × B
25 24 adantr x A y B x × B x A x × B
26 simpr x A y B y B
27 vsnid x x
28 opelxp x y x × B x x y B
29 27 28 mpbiran x y x × B y B
30 26 29 sylibr x A y B x y x × B
31 25 30 sseldd x A y B x y x A x × B
32 31 1 eleqtrrdi x A y B x y T
33 vex x V
34 vex y V
35 33 34 op2nd 2 nd x y = y
36 fveqeq2 z = x y 2 nd z = y 2 nd x y = y
37 36 rspcev x y T 2 nd x y = y z T 2 nd z = y
38 32 35 37 sylancl x A y B z T 2 nd z = y
39 38 ex x A y B z T 2 nd z = y
40 23 39 rexlimi x A y B z T 2 nd z = y
41 19 40 impbii z T 2 nd z = y x A y B
42 fvelimab 2 nd Fn V T V y 2 nd T z T 2 nd z = y
43 5 6 42 mp2an y 2 nd T z T 2 nd z = y
44 eliun y x A B x A y B
45 41 43 44 3bitr4i y 2 nd T y x A B
46 45 eqriv 2 nd T = x A B
47 9 46 eqtr3i ran 2 nd T = x A B
48 df-fo 2 nd T : T onto x A B 2 nd T Fn T ran 2 nd T = x A B
49 8 47 48 mpbir2an 2 nd T : T onto x A B