Metamath Proof Explorer


Theorem iunid

Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005)

Ref Expression
Assertion iunid x A x = A

Proof

Step Hyp Ref Expression
1 df-sn x = y | y = x
2 equcom y = x x = y
3 2 abbii y | y = x = y | x = y
4 1 3 eqtri x = y | x = y
5 4 a1i x A x = y | x = y
6 5 iuneq2i x A x = x A y | x = y
7 iunab x A y | x = y = y | x A x = y
8 risset y A x A x = y
9 8 abbii y | y A = y | x A x = y
10 abid2 y | y A = A
11 7 9 10 3eqtr2i x A y | x = y = A
12 6 11 eqtri x A x = A