Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iunid
Next ⟩
iun0
Metamath Proof Explorer
Ascii
Unicode
Theorem
iunid
Description:
An indexed union of singletons recovers the index set.
(Contributed by
NM
, 6-Sep-2005)
Ref
Expression
Assertion
iunid
⊢
⋃
x
∈
A
x
=
A
Proof
Step
Hyp
Ref
Expression
1
df-sn
⊢
x
=
y
|
y
=
x
2
equcom
⊢
y
=
x
↔
x
=
y
3
2
abbii
⊢
y
|
y
=
x
=
y
|
x
=
y
4
1
3
eqtri
⊢
x
=
y
|
x
=
y
5
4
a1i
⊢
x
∈
A
→
x
=
y
|
x
=
y
6
5
iuneq2i
⊢
⋃
x
∈
A
x
=
⋃
x
∈
A
y
|
x
=
y
7
iunab
⊢
⋃
x
∈
A
y
|
x
=
y
=
y
|
∃
x
∈
A
x
=
y
8
risset
⊢
y
∈
A
↔
∃
x
∈
A
x
=
y
9
8
abbii
⊢
y
|
y
∈
A
=
y
|
∃
x
∈
A
x
=
y
10
abid2
⊢
y
|
y
∈
A
=
A
11
7
9
10
3eqtr2i
⊢
⋃
x
∈
A
y
|
x
=
y
=
A
12
6
11
eqtri
⊢
⋃
x
∈
A
x
=
A