Metamath Proof Explorer


Theorem iuniin

Description: Law combining indexed union with indexed intersection. Eq. 14 in KuratowskiMostowski p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29 . (Contributed by NM, 17-Aug-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iuniin xAyBCyBxAC

Proof

Step Hyp Ref Expression
1 r19.12 xAyBzCyBxAzC
2 eliin zVzyBCyBzC
3 2 elv zyBCyBzC
4 3 rexbii xAzyBCxAyBzC
5 eliun zxACxAzC
6 5 ralbii yBzxACyBxAzC
7 1 4 6 3imtr4i xAzyBCyBzxAC
8 eliun zxAyBCxAzyBC
9 eliin zVzyBxACyBzxAC
10 9 elv zyBxACyBzxAC
11 7 8 10 3imtr4i zxAyBCzyBxAC
12 11 ssriv xAyBCyBxAC