Metamath Proof Explorer


Theorem iuniin

Description: Law combining indexed union with indexed intersection. Eq. 14 in KuratowskiMostowski p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29 . (Contributed by NM, 17-Aug-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iuniin x A y B C y B x A C

Proof

Step Hyp Ref Expression
1 r19.12 x A y B z C y B x A z C
2 eliin z V z y B C y B z C
3 2 elv z y B C y B z C
4 3 rexbii x A z y B C x A y B z C
5 eliun z x A C x A z C
6 5 ralbii y B z x A C y B x A z C
7 1 4 6 3imtr4i x A z y B C y B z x A C
8 eliun z x A y B C x A z y B C
9 eliin z V z y B x A C y B z x A C
10 9 elv z y B x A C y B z x A C
11 7 8 10 3imtr4i z x A y B C z y B x A C
12 11 ssriv x A y B C y B x A C