Metamath Proof Explorer


Theorem iunin1f

Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use uniiun to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004) (Revised by Thierry Arnoux, 2-May-2020)

Ref Expression
Hypothesis iunin1f.1 _ x C
Assertion iunin1f x A B C = x A B C

Proof

Step Hyp Ref Expression
1 iunin1f.1 _ x C
2 1 nfcri x y C
3 2 r19.41 x A y B y C x A y B y C
4 elin y B C y B y C
5 4 rexbii x A y B C x A y B y C
6 eliun y x A B x A y B
7 6 anbi1i y x A B y C x A y B y C
8 3 5 7 3bitr4i x A y B C y x A B y C
9 eliun y x A B C x A y B C
10 elin y x A B C y x A B y C
11 8 9 10 3bitr4i y x A B C y x A B C
12 11 eqriv x A B C = x A B C