Metamath Proof Explorer


Theorem iuninc

Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017)

Ref Expression
Hypotheses iuninc.1 φ F Fn
iuninc.2 φ n F n F n + 1
Assertion iuninc φ i n = 1 i F n = F i

Proof

Step Hyp Ref Expression
1 iuninc.1 φ F Fn
2 iuninc.2 φ n F n F n + 1
3 oveq2 j = 1 1 j = 1 1
4 3 iuneq1d j = 1 n = 1 j F n = n = 1 1 F n
5 fveq2 j = 1 F j = F 1
6 4 5 eqeq12d j = 1 n = 1 j F n = F j n = 1 1 F n = F 1
7 6 imbi2d j = 1 φ n = 1 j F n = F j φ n = 1 1 F n = F 1
8 oveq2 j = k 1 j = 1 k
9 8 iuneq1d j = k n = 1 j F n = n = 1 k F n
10 fveq2 j = k F j = F k
11 9 10 eqeq12d j = k n = 1 j F n = F j n = 1 k F n = F k
12 11 imbi2d j = k φ n = 1 j F n = F j φ n = 1 k F n = F k
13 oveq2 j = k + 1 1 j = 1 k + 1
14 13 iuneq1d j = k + 1 n = 1 j F n = n = 1 k + 1 F n
15 fveq2 j = k + 1 F j = F k + 1
16 14 15 eqeq12d j = k + 1 n = 1 j F n = F j n = 1 k + 1 F n = F k + 1
17 16 imbi2d j = k + 1 φ n = 1 j F n = F j φ n = 1 k + 1 F n = F k + 1
18 oveq2 j = i 1 j = 1 i
19 18 iuneq1d j = i n = 1 j F n = n = 1 i F n
20 fveq2 j = i F j = F i
21 19 20 eqeq12d j = i n = 1 j F n = F j n = 1 i F n = F i
22 21 imbi2d j = i φ n = 1 j F n = F j φ n = 1 i F n = F i
23 1z 1
24 fzsn 1 1 1 = 1
25 iuneq1 1 1 = 1 n = 1 1 F n = n 1 F n
26 23 24 25 mp2b n = 1 1 F n = n 1 F n
27 1ex 1 V
28 fveq2 n = 1 F n = F 1
29 27 28 iunxsn n 1 F n = F 1
30 26 29 eqtri n = 1 1 F n = F 1
31 30 a1i φ n = 1 1 F n = F 1
32 simpll k φ n = 1 k F n = F k k
33 elnnuz k k 1
34 fzsuc k 1 1 k + 1 = 1 k k + 1
35 33 34 sylbi k 1 k + 1 = 1 k k + 1
36 35 iuneq1d k n = 1 k + 1 F n = n 1 k k + 1 F n
37 iunxun n 1 k k + 1 F n = n = 1 k F n n k + 1 F n
38 ovex k + 1 V
39 fveq2 n = k + 1 F n = F k + 1
40 38 39 iunxsn n k + 1 F n = F k + 1
41 40 uneq2i n = 1 k F n n k + 1 F n = n = 1 k F n F k + 1
42 37 41 eqtri n 1 k k + 1 F n = n = 1 k F n F k + 1
43 36 42 eqtrdi k n = 1 k + 1 F n = n = 1 k F n F k + 1
44 32 43 syl k φ n = 1 k F n = F k n = 1 k + 1 F n = n = 1 k F n F k + 1
45 simpr k φ n = 1 k F n = F k n = 1 k F n = F k
46 45 uneq1d k φ n = 1 k F n = F k n = 1 k F n F k + 1 = F k F k + 1
47 simplr k φ n = 1 k F n = F k φ
48 2 sbt k n φ n F n F n + 1
49 sbim k n φ n F n F n + 1 k n φ n k n F n F n + 1
50 sban k n φ n k n φ k n n
51 sbv k n φ φ
52 clelsb1 k n n k
53 51 52 anbi12i k n φ k n n φ k
54 50 53 bitr2i φ k k n φ n
55 sbsbc k n F n F n + 1 [˙k / n]˙ F n F n + 1
56 sbcssg k V [˙k / n]˙ F n F n + 1 k / n F n k / n F n + 1
57 56 elv [˙k / n]˙ F n F n + 1 k / n F n k / n F n + 1
58 csbfv k / n F n = F k
59 csbfv2g k V k / n F n + 1 = F k / n n + 1
60 59 elv k / n F n + 1 = F k / n n + 1
61 csbov1g k V k / n n + 1 = k / n n + 1
62 61 elv k / n n + 1 = k / n n + 1
63 62 fveq2i F k / n n + 1 = F k / n n + 1
64 vex k V
65 64 csbvargi k / n n = k
66 65 oveq1i k / n n + 1 = k + 1
67 66 fveq2i F k / n n + 1 = F k + 1
68 60 63 67 3eqtri k / n F n + 1 = F k + 1
69 58 68 sseq12i k / n F n k / n F n + 1 F k F k + 1
70 55 57 69 3bitrri F k F k + 1 k n F n F n + 1
71 54 70 imbi12i φ k F k F k + 1 k n φ n k n F n F n + 1
72 49 71 bitr4i k n φ n F n F n + 1 φ k F k F k + 1
73 48 72 mpbi φ k F k F k + 1
74 ssequn1 F k F k + 1 F k F k + 1 = F k + 1
75 73 74 sylib φ k F k F k + 1 = F k + 1
76 47 32 75 syl2anc k φ n = 1 k F n = F k F k F k + 1 = F k + 1
77 44 46 76 3eqtrd k φ n = 1 k F n = F k n = 1 k + 1 F n = F k + 1
78 77 exp31 k φ n = 1 k F n = F k n = 1 k + 1 F n = F k + 1
79 78 a2d k φ n = 1 k F n = F k φ n = 1 k + 1 F n = F k + 1
80 7 12 17 22 31 79 nnind i φ n = 1 i F n = F i
81 80 impcom φ i n = 1 i F n = F i