| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunincfi.1 |
|
| 2 |
|
iunincfi.2 |
|
| 3 |
|
eliun |
|
| 4 |
3
|
biimpi |
|
| 5 |
4
|
adantl |
|
| 6 |
|
elfzuz3 |
|
| 7 |
6
|
adantl |
|
| 8 |
|
simpll |
|
| 9 |
|
elfzuz |
|
| 10 |
|
fzoss1 |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
sseldd |
|
| 15 |
14
|
adantll |
|
| 16 |
|
eleq1w |
|
| 17 |
16
|
anbi2d |
|
| 18 |
|
fveq2 |
|
| 19 |
|
fvoveq1 |
|
| 20 |
18 19
|
sseq12d |
|
| 21 |
17 20
|
imbi12d |
|
| 22 |
21 2
|
chvarvv |
|
| 23 |
8 15 22
|
syl2anc |
|
| 24 |
7 23
|
ssinc |
|
| 25 |
24
|
3adant3 |
|
| 26 |
|
simp3 |
|
| 27 |
25 26
|
sseldd |
|
| 28 |
27
|
3exp |
|
| 29 |
28
|
rexlimdv |
|
| 30 |
29
|
imp |
|
| 31 |
5 30
|
syldan |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
|
dfss3 |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
|
eluzfz2 |
|
| 36 |
1 35
|
syl |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
ssiun2s |
|
| 39 |
36 38
|
syl |
|
| 40 |
34 39
|
eqssd |
|