Step |
Hyp |
Ref |
Expression |
1 |
|
iunincfi.1 |
|
2 |
|
iunincfi.2 |
|
3 |
|
eliun |
|
4 |
3
|
biimpi |
|
5 |
4
|
adantl |
|
6 |
|
elfzuz3 |
|
7 |
6
|
adantl |
|
8 |
|
simpll |
|
9 |
|
elfzuz |
|
10 |
|
fzoss1 |
|
11 |
9 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
12 13
|
sseldd |
|
15 |
14
|
adantll |
|
16 |
|
eleq1w |
|
17 |
16
|
anbi2d |
|
18 |
|
fveq2 |
|
19 |
|
fvoveq1 |
|
20 |
18 19
|
sseq12d |
|
21 |
17 20
|
imbi12d |
|
22 |
21 2
|
chvarvv |
|
23 |
8 15 22
|
syl2anc |
|
24 |
7 23
|
ssinc |
|
25 |
24
|
3adant3 |
|
26 |
|
simp3 |
|
27 |
25 26
|
sseldd |
|
28 |
27
|
3exp |
|
29 |
28
|
rexlimdv |
|
30 |
29
|
imp |
|
31 |
5 30
|
syldan |
|
32 |
31
|
ralrimiva |
|
33 |
|
dfss3 |
|
34 |
32 33
|
sylibr |
|
35 |
|
eluzfz2 |
|
36 |
1 35
|
syl |
|
37 |
|
fveq2 |
|
38 |
37
|
ssiun2s |
|
39 |
36 38
|
syl |
|
40 |
34 39
|
eqssd |
|