Metamath Proof Explorer


Theorem iunmapdisj

Description: The union U_ n e. C ( A ^m n ) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion iunmapdisj * n C B A n

Proof

Step Hyp Ref Expression
1 moeq * n n = dom B
2 elmapi B A n B : n A
3 fdm B : n A dom B = n
4 3 eqcomd B : n A n = dom B
5 2 4 syl B A n n = dom B
6 5 moimi * n n = dom B * n B A n
7 1 6 ax-mp * n B A n
8 7 moani * n n C B A n
9 df-rmo * n C B A n * n n C B A n
10 8 9 mpbir * n C B A n