Metamath Proof Explorer


Theorem iunmbl2

Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion iunmbl2 A n A B dom vol n A B dom vol

Proof

Step Hyp Ref Expression
1 brdom2 A A A
2 nnenom ω
3 sdomentr A ω A ω
4 2 3 mpan2 A A ω
5 isfinite A Fin A ω
6 finiunmbl A Fin n A B dom vol n A B dom vol
7 6 ex A Fin n A B dom vol n A B dom vol
8 5 7 sylbir A ω n A B dom vol n A B dom vol
9 4 8 syl A n A B dom vol n A B dom vol
10 bren A f f : A 1-1 onto
11 nfv n f : A 1-1 onto
12 nfcv _ n
13 nfcsb1v _ n f -1 k / n B
14 13 nfcri n x f -1 k / n B
15 12 14 nfrex n k x f -1 k / n B
16 f1of f : A 1-1 onto f : A
17 16 ffvelrnda f : A 1-1 onto n A f n
18 17 3adant3 f : A 1-1 onto n A x B f n
19 simp3 f : A 1-1 onto n A x B x B
20 f1ocnvfv1 f : A 1-1 onto n A f -1 f n = n
21 20 3adant3 f : A 1-1 onto n A x B f -1 f n = n
22 21 eqcomd f : A 1-1 onto n A x B n = f -1 f n
23 csbeq1a n = f -1 f n B = f -1 f n / n B
24 22 23 syl f : A 1-1 onto n A x B B = f -1 f n / n B
25 19 24 eleqtrd f : A 1-1 onto n A x B x f -1 f n / n B
26 fveq2 k = f n f -1 k = f -1 f n
27 26 csbeq1d k = f n f -1 k / n B = f -1 f n / n B
28 27 eleq2d k = f n x f -1 k / n B x f -1 f n / n B
29 28 rspcev f n x f -1 f n / n B k x f -1 k / n B
30 18 25 29 syl2anc f : A 1-1 onto n A x B k x f -1 k / n B
31 30 3exp f : A 1-1 onto n A x B k x f -1 k / n B
32 11 15 31 rexlimd f : A 1-1 onto n A x B k x f -1 k / n B
33 f1ocnvdm f : A 1-1 onto k f -1 k A
34 csbeq1a n = f -1 k B = f -1 k / n B
35 34 eleq2d n = f -1 k x B x f -1 k / n B
36 14 35 rspce f -1 k A x f -1 k / n B n A x B
37 36 ex f -1 k A x f -1 k / n B n A x B
38 33 37 syl f : A 1-1 onto k x f -1 k / n B n A x B
39 38 rexlimdva f : A 1-1 onto k x f -1 k / n B n A x B
40 32 39 impbid f : A 1-1 onto n A x B k x f -1 k / n B
41 eliun x n A B n A x B
42 eliun x k f -1 k / n B k x f -1 k / n B
43 40 41 42 3bitr4g f : A 1-1 onto x n A B x k f -1 k / n B
44 43 eqrdv f : A 1-1 onto n A B = k f -1 k / n B
45 44 adantr f : A 1-1 onto n A B dom vol n A B = k f -1 k / n B
46 rspcsbela f -1 k A n A B dom vol f -1 k / n B dom vol
47 33 46 sylan f : A 1-1 onto k n A B dom vol f -1 k / n B dom vol
48 47 an32s f : A 1-1 onto n A B dom vol k f -1 k / n B dom vol
49 48 ralrimiva f : A 1-1 onto n A B dom vol k f -1 k / n B dom vol
50 iunmbl k f -1 k / n B dom vol k f -1 k / n B dom vol
51 49 50 syl f : A 1-1 onto n A B dom vol k f -1 k / n B dom vol
52 45 51 eqeltrd f : A 1-1 onto n A B dom vol n A B dom vol
53 52 ex f : A 1-1 onto n A B dom vol n A B dom vol
54 53 exlimiv f f : A 1-1 onto n A B dom vol n A B dom vol
55 10 54 sylbi A n A B dom vol n A B dom vol
56 9 55 jaoi A A n A B dom vol n A B dom vol
57 1 56 sylbi A n A B dom vol n A B dom vol
58 57 imp A n A B dom vol n A B dom vol