| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdom2 |  | 
						
							| 2 |  | nnenom |  | 
						
							| 3 |  | sdomentr |  | 
						
							| 4 | 2 3 | mpan2 |  | 
						
							| 5 |  | isfinite |  | 
						
							| 6 |  | finiunmbl |  | 
						
							| 7 | 6 | ex |  | 
						
							| 8 | 5 7 | sylbir |  | 
						
							| 9 | 4 8 | syl |  | 
						
							| 10 |  | bren |  | 
						
							| 11 |  | nfv |  | 
						
							| 12 |  | nfcv |  | 
						
							| 13 |  | nfcsb1v |  | 
						
							| 14 | 13 | nfcri |  | 
						
							| 15 | 12 14 | nfrexw |  | 
						
							| 16 |  | f1of |  | 
						
							| 17 | 16 | ffvelcdmda |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 |  | simp3 |  | 
						
							| 20 |  | f1ocnvfv1 |  | 
						
							| 21 | 20 | 3adant3 |  | 
						
							| 22 | 21 | eqcomd |  | 
						
							| 23 |  | csbeq1a |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 19 24 | eleqtrd |  | 
						
							| 26 |  | fveq2 |  | 
						
							| 27 | 26 | csbeq1d |  | 
						
							| 28 | 27 | eleq2d |  | 
						
							| 29 | 28 | rspcev |  | 
						
							| 30 | 18 25 29 | syl2anc |  | 
						
							| 31 | 30 | 3exp |  | 
						
							| 32 | 11 15 31 | rexlimd |  | 
						
							| 33 |  | f1ocnvdm |  | 
						
							| 34 |  | csbeq1a |  | 
						
							| 35 | 34 | eleq2d |  | 
						
							| 36 | 14 35 | rspce |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 | 33 37 | syl |  | 
						
							| 39 | 38 | rexlimdva |  | 
						
							| 40 | 32 39 | impbid |  | 
						
							| 41 |  | eliun |  | 
						
							| 42 |  | eliun |  | 
						
							| 43 | 40 41 42 | 3bitr4g |  | 
						
							| 44 | 43 | eqrdv |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | rspcsbela |  | 
						
							| 47 | 33 46 | sylan |  | 
						
							| 48 | 47 | an32s |  | 
						
							| 49 | 48 | ralrimiva |  | 
						
							| 50 |  | iunmbl |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 | 45 51 | eqeltrd |  | 
						
							| 53 | 52 | ex |  | 
						
							| 54 | 53 | exlimiv |  | 
						
							| 55 | 10 54 | sylbi |  | 
						
							| 56 | 9 55 | jaoi |  | 
						
							| 57 | 1 56 | sylbi |  | 
						
							| 58 | 57 | imp |  |