Metamath Proof Explorer


Theorem iunn0

Description: There is a nonempty class in an indexed collection B ( x ) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunn0 x A B x A B

Proof

Step Hyp Ref Expression
1 rexcom4 x A y y B y x A y B
2 eliun y x A B x A y B
3 2 exbii y y x A B y x A y B
4 1 3 bitr4i x A y y B y y x A B
5 n0 B y y B
6 5 rexbii x A B x A y y B
7 n0 x A B y y x A B
8 4 6 7 3bitr4i x A B x A B