Metamath Proof Explorer


Theorem iunopn

Description: The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion iunopn J Top x A B J x A B J

Proof

Step Hyp Ref Expression
1 dfiun2g x A B J x A B = y | x A y = B
2 1 adantl J Top x A B J x A B = y | x A y = B
3 uniiunlem x A B J x A B J y | x A y = B J
4 3 ibi x A B J y | x A y = B J
5 uniopn J Top y | x A y = B J y | x A y = B J
6 4 5 sylan2 J Top x A B J y | x A y = B J
7 2 6 eqeltrd J Top x A B J x A B J