Metamath Proof Explorer


Theorem iunpw

Description: An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)

Ref Expression
Hypothesis iunpw.1 A V
Assertion iunpw x A x = A 𝒫 A = x A 𝒫 x

Proof

Step Hyp Ref Expression
1 iunpw.1 A V
2 sseq2 x = A y x y A
3 2 biimprcd y A x = A y x
4 3 reximdv y A x A x = A x A y x
5 4 com12 x A x = A y A x A y x
6 ssiun x A y x y x A x
7 uniiun A = x A x
8 6 7 sseqtrrdi x A y x y A
9 5 8 impbid1 x A x = A y A x A y x
10 velpw y 𝒫 A y A
11 eliun y x A 𝒫 x x A y 𝒫 x
12 velpw y 𝒫 x y x
13 12 rexbii x A y 𝒫 x x A y x
14 11 13 bitri y x A 𝒫 x x A y x
15 9 10 14 3bitr4g x A x = A y 𝒫 A y x A 𝒫 x
16 15 eqrdv x A x = A 𝒫 A = x A 𝒫 x
17 ssid A A
18 1 uniex A V
19 18 elpw A 𝒫 A A A
20 eleq2 𝒫 A = x A 𝒫 x A 𝒫 A A x A 𝒫 x
21 19 20 bitr3id 𝒫 A = x A 𝒫 x A A A x A 𝒫 x
22 17 21 mpbii 𝒫 A = x A 𝒫 x A x A 𝒫 x
23 eliun A x A 𝒫 x x A A 𝒫 x
24 22 23 sylib 𝒫 A = x A 𝒫 x x A A 𝒫 x
25 elssuni x A x A
26 elpwi A 𝒫 x A x
27 25 26 anim12i x A A 𝒫 x x A A x
28 eqss x = A x A A x
29 27 28 sylibr x A A 𝒫 x x = A
30 29 ex x A A 𝒫 x x = A
31 30 reximia x A A 𝒫 x x A x = A
32 24 31 syl 𝒫 A = x A 𝒫 x x A x = A
33 16 32 impbii x A x = A 𝒫 A = x A 𝒫 x