Metamath Proof Explorer


Theorem iunpwss

Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of Enderton p. 33. (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion iunpwss x A 𝒫 x 𝒫 A

Proof

Step Hyp Ref Expression
1 ssiun x A y x y x A x
2 eliun y x A 𝒫 x x A y 𝒫 x
3 velpw y 𝒫 x y x
4 3 rexbii x A y 𝒫 x x A y x
5 2 4 bitri y x A 𝒫 x x A y x
6 velpw y 𝒫 A y A
7 uniiun A = x A x
8 7 sseq2i y A y x A x
9 6 8 bitri y 𝒫 A y x A x
10 1 5 9 3imtr4i y x A 𝒫 x y 𝒫 A
11 10 ssriv x A 𝒫 x 𝒫 A