Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Indexed union - misc additions
iunrdx
Next ⟩
iunpreima
Metamath Proof Explorer
Ascii
Unicode
Theorem
iunrdx
Description:
Re-index an indexed union.
(Contributed by
Thierry Arnoux
, 6-Apr-2017)
Ref
Expression
Hypotheses
iunrdx.1
⊢
φ
→
F
:
A
⟶
onto
C
iunrdx.2
⊢
φ
∧
y
=
F
⁡
x
→
D
=
B
Assertion
iunrdx
⊢
φ
→
⋃
x
∈
A
B
=
⋃
y
∈
C
D
Proof
Step
Hyp
Ref
Expression
1
iunrdx.1
⊢
φ
→
F
:
A
⟶
onto
C
2
iunrdx.2
⊢
φ
∧
y
=
F
⁡
x
→
D
=
B
3
fof
⊢
F
:
A
⟶
onto
C
→
F
:
A
⟶
C
4
1
3
syl
⊢
φ
→
F
:
A
⟶
C
5
4
ffvelrnda
⊢
φ
∧
x
∈
A
→
F
⁡
x
∈
C
6
foelrn
⊢
F
:
A
⟶
onto
C
∧
y
∈
C
→
∃
x
∈
A
y
=
F
⁡
x
7
1
6
sylan
⊢
φ
∧
y
∈
C
→
∃
x
∈
A
y
=
F
⁡
x
8
2
eleq2d
⊢
φ
∧
y
=
F
⁡
x
→
z
∈
D
↔
z
∈
B
9
5
7
8
rexxfrd
⊢
φ
→
∃
y
∈
C
z
∈
D
↔
∃
x
∈
A
z
∈
B
10
9
bicomd
⊢
φ
→
∃
x
∈
A
z
∈
B
↔
∃
y
∈
C
z
∈
D
11
10
abbidv
⊢
φ
→
z
|
∃
x
∈
A
z
∈
B
=
z
|
∃
y
∈
C
z
∈
D
12
df-iun
⊢
⋃
x
∈
A
B
=
z
|
∃
x
∈
A
z
∈
B
13
df-iun
⊢
⋃
y
∈
C
D
=
z
|
∃
y
∈
C
z
∈
D
14
11
12
13
3eqtr4g
⊢
φ
→
⋃
x
∈
A
B
=
⋃
y
∈
C
D