Metamath Proof Explorer


Theorem iunrdx

Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses iunrdx.1 φ F : A onto C
iunrdx.2 φ y = F x D = B
Assertion iunrdx φ x A B = y C D

Proof

Step Hyp Ref Expression
1 iunrdx.1 φ F : A onto C
2 iunrdx.2 φ y = F x D = B
3 fof F : A onto C F : A C
4 1 3 syl φ F : A C
5 4 ffvelrnda φ x A F x C
6 foelrn F : A onto C y C x A y = F x
7 1 6 sylan φ y C x A y = F x
8 2 eleq2d φ y = F x z D z B
9 5 7 8 rexxfrd φ y C z D x A z B
10 9 bicomd φ x A z B y C z D
11 10 abbidv φ z | x A z B = z | y C z D
12 df-iun x A B = z | x A z B
13 df-iun y C D = z | y C z D
14 11 12 13 3eqtr4g φ x A B = y C D