Metamath Proof Explorer


Theorem iunsnima

Description: Image of a singleton by an indexed union involving that singleton. (Contributed by Thierry Arnoux, 10-Apr-2020)

Ref Expression
Hypotheses iunsnima.1 φ A V
iunsnima.2 φ x A B W
Assertion iunsnima φ x A x A x × B x = B

Proof

Step Hyp Ref Expression
1 iunsnima.1 φ A V
2 iunsnima.2 φ x A B W
3 vex x V
4 vex y V
5 3 4 elimasn y x A x × B x x y x A x × B
6 opeliunxp x y x A x × B x A y B
7 6 baib x A x y x A x × B y B
8 7 adantl φ x A x y x A x × B y B
9 5 8 syl5bb φ x A y x A x × B x y B
10 9 eqrdv φ x A x A x × B x = B