Metamath Proof Explorer


Theorem iunss1

Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iunss1 A B x A C x B C

Proof

Step Hyp Ref Expression
1 ssrexv A B x A y C x B y C
2 eliun y x A C x A y C
3 eliun y x B C x B y C
4 1 2 3 3imtr4g A B y x A C y x B C
5 4 ssrdv A B x A C x B C