Metamath Proof Explorer


Theorem iunssdf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iunssdf.1 x φ
iunssdf.2 _ x C
iunssdf.3 φ x A B C
Assertion iunssdf φ x A B C

Proof

Step Hyp Ref Expression
1 iunssdf.1 x φ
2 iunssdf.2 _ x C
3 iunssdf.3 φ x A B C
4 1 3 ralrimia φ x A B C
5 2 iunssf x A B C x A B C
6 4 5 sylibr φ x A B C