Metamath Proof Explorer


Theorem iunsuc

Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses iunsuc.1 A V
iunsuc.2 x = A B = C
Assertion iunsuc x suc A B = x A B C

Proof

Step Hyp Ref Expression
1 iunsuc.1 A V
2 iunsuc.2 x = A B = C
3 df-suc suc A = A A
4 iuneq1 suc A = A A x suc A B = x A A B
5 3 4 ax-mp x suc A B = x A A B
6 iunxun x A A B = x A B x A B
7 1 2 iunxsn x A B = C
8 7 uneq2i x A B x A B = x A B C
9 5 6 8 3eqtri x suc A B = x A B C