Metamath Proof Explorer


Theorem iunun

Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iunun xABC=xABxAC

Proof

Step Hyp Ref Expression
1 r19.43 xAyByCxAyBxAyC
2 elun yBCyByC
3 2 rexbii xAyBCxAyByC
4 eliun yxABxAyB
5 eliun yxACxAyC
6 4 5 orbi12i yxAByxACxAyBxAyC
7 1 3 6 3bitr4i xAyBCyxAByxAC
8 eliun yxABCxAyBC
9 elun yxABxACyxAByxAC
10 7 8 9 3bitr4i yxABCyxABxAC
11 10 eqriv xABC=xABxAC