Description: A relationship involving union and indexed union. Exercise 25 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | iununi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |
|
2 | iunconst | |
|
3 | 1 2 | sylbir | |
4 | iun0 | |
|
5 | id | |
|
6 | 5 | iuneq2d | |
7 | 4 6 5 | 3eqtr4a | |
8 | 3 7 | ja | |
9 | 8 | eqcomd | |
10 | 9 | uneq1d | |
11 | uniiun | |
|
12 | 11 | uneq2i | |
13 | iunun | |
|
14 | 10 12 13 | 3eqtr4g | |
15 | unieq | |
|
16 | uni0 | |
|
17 | 15 16 | eqtrdi | |
18 | 17 | uneq2d | |
19 | un0 | |
|
20 | 18 19 | eqtrdi | |
21 | iuneq1 | |
|
22 | 0iun | |
|
23 | 21 22 | eqtrdi | |
24 | 20 23 | eqeq12d | |
25 | 24 | biimpcd | |
26 | 14 25 | impbii | |