Metamath Proof Explorer


Theorem iununi

Description: A relationship involving union and indexed union. Exercise 25 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iununi B=A=AB=xBAx

Proof

Step Hyp Ref Expression
1 df-ne B¬B=
2 iunconst BxBA=A
3 1 2 sylbir ¬B=xBA=A
4 iun0 xB=
5 id A=A=
6 5 iuneq2d A=xBA=xB
7 4 6 5 3eqtr4a A=xBA=A
8 3 7 ja B=A=xBA=A
9 8 eqcomd B=A=A=xBA
10 9 uneq1d B=A=AxBx=xBAxBx
11 uniiun B=xBx
12 11 uneq2i AB=AxBx
13 iunun xBAx=xBAxBx
14 10 12 13 3eqtr4g B=A=AB=xBAx
15 unieq B=B=
16 uni0 =
17 15 16 eqtrdi B=B=
18 17 uneq2d B=AB=A
19 un0 A=A
20 18 19 eqtrdi B=AB=A
21 iuneq1 B=xBAx=xAx
22 0iun xAx=
23 21 22 eqtrdi B=xBAx=
24 20 23 eqeq12d B=AB=xBAxA=
25 24 biimpcd AB=xBAxB=A=
26 14 25 impbii B=A=AB=xBAx