Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iunxdif2
Next ⟩
ssiinf
Metamath Proof Explorer
Ascii
Unicode
Theorem
iunxdif2
Description:
Indexed union with a class difference as its index.
(Contributed by
NM
, 10-Dec-2004)
Ref
Expression
Hypothesis
iunxdif2.1
⊢
x
=
y
→
C
=
D
Assertion
iunxdif2
⊢
∀
x
∈
A
∃
y
∈
A
∖
B
C
⊆
D
→
⋃
y
∈
A
∖
B
D
=
⋃
x
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
iunxdif2.1
⊢
x
=
y
→
C
=
D
2
iunss2
⊢
∀
x
∈
A
∃
y
∈
A
∖
B
C
⊆
D
→
⋃
x
∈
A
C
⊆
⋃
y
∈
A
∖
B
D
3
difss
⊢
A
∖
B
⊆
A
4
iunss1
⊢
A
∖
B
⊆
A
→
⋃
y
∈
A
∖
B
D
⊆
⋃
y
∈
A
D
5
3
4
ax-mp
⊢
⋃
y
∈
A
∖
B
D
⊆
⋃
y
∈
A
D
6
1
cbviunv
⊢
⋃
x
∈
A
C
=
⋃
y
∈
A
D
7
5
6
sseqtrri
⊢
⋃
y
∈
A
∖
B
D
⊆
⋃
x
∈
A
C
8
2
7
jctil
⊢
∀
x
∈
A
∃
y
∈
A
∖
B
C
⊆
D
→
⋃
y
∈
A
∖
B
D
⊆
⋃
x
∈
A
C
∧
⋃
x
∈
A
C
⊆
⋃
y
∈
A
∖
B
D
9
eqss
⊢
⋃
y
∈
A
∖
B
D
=
⋃
x
∈
A
C
↔
⋃
y
∈
A
∖
B
D
⊆
⋃
x
∈
A
C
∧
⋃
x
∈
A
C
⊆
⋃
y
∈
A
∖
B
D
10
8
9
sylibr
⊢
∀
x
∈
A
∃
y
∈
A
∖
B
C
⊆
D
→
⋃
y
∈
A
∖
B
D
=
⋃
x
∈
A
C