Metamath Proof Explorer


Theorem iunxdif2

Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004)

Ref Expression
Hypothesis iunxdif2.1 x = y C = D
Assertion iunxdif2 x A y A B C D y A B D = x A C

Proof

Step Hyp Ref Expression
1 iunxdif2.1 x = y C = D
2 iunss2 x A y A B C D x A C y A B D
3 difss A B A
4 iunss1 A B A y A B D y A D
5 3 4 ax-mp y A B D y A D
6 1 cbviunv x A C = y A D
7 5 6 sseqtrri y A B D x A C
8 2 7 jctil x A y A B C D y A B D x A C x A C y A B D
9 eqss y A B D = x A C y A B D x A C x A C y A B D
10 8 9 sylibr x A y A B C D y A B D = x A C