Metamath Proof Explorer


Theorem iunxprg

Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018)

Ref Expression
Hypotheses iunxprg.1 x = A C = D
iunxprg.2 x = B C = E
Assertion iunxprg A V B W x A B C = D E

Proof

Step Hyp Ref Expression
1 iunxprg.1 x = A C = D
2 iunxprg.2 x = B C = E
3 df-pr A B = A B
4 iuneq1 A B = A B x A B C = x A B C
5 3 4 ax-mp x A B C = x A B C
6 iunxun x A B C = x A C x B C
7 5 6 eqtri x A B C = x A C x B C
8 1 iunxsng A V x A C = D
9 8 adantr A V B W x A C = D
10 2 iunxsng B W x B C = E
11 10 adantl A V B W x B C = E
12 9 11 uneq12d A V B W x A C x B C = D E
13 7 12 eqtrid A V B W x A B C = D E