Metamath Proof Explorer


Theorem iunxsn

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004) (Proof shortened by Mario Carneiro, 25-Jun-2016)

Ref Expression
Hypotheses iunxsn.1 A V
iunxsn.2 x = A B = C
Assertion iunxsn x A B = C

Proof

Step Hyp Ref Expression
1 iunxsn.1 A V
2 iunxsn.2 x = A B = C
3 2 iunxsng A V x A B = C
4 1 3 ax-mp x A B = C