Metamath Proof Explorer


Theorem iunxsnf

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iunxsnf.1 _ x C
iunxsnf.2 A V
iunxsnf.3 x = A B = C
Assertion iunxsnf x A B = C

Proof

Step Hyp Ref Expression
1 iunxsnf.1 _ x C
2 iunxsnf.2 A V
3 iunxsnf.3 x = A B = C
4 1 3 iunxsngf A V x A B = C
5 2 4 ax-mp x A B = C