Metamath Proof Explorer


Theorem iunxsngf

Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016) (Revised by Thierry Arnoux, 2-May-2020) Avoid ax-13 . (Revised by Gino Giotto, 19-May-2023)

Ref Expression
Hypotheses iunxsngf.1 _ x C
iunxsngf.2 x = A B = C
Assertion iunxsngf A V x A B = C

Proof

Step Hyp Ref Expression
1 iunxsngf.1 _ x C
2 iunxsngf.2 x = A B = C
3 eliun y x A B x A y B
4 1 nfcri x y C
5 2 eleq2d x = A y B y C
6 4 5 rexsngf A V x A y B y C
7 3 6 syl5bb A V y x A B y C
8 7 eqrdv A V x A B = C