Metamath Proof Explorer


Theorem ivth

Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008) (Proof shortened by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses ivth.1 φ A
ivth.2 φ B
ivth.3 φ U
ivth.4 φ A < B
ivth.5 φ A B D
ivth.7 φ F : D cn
ivth.8 φ x A B F x
ivth.9 φ F A < U U < F B
Assertion ivth φ c A B F c = U

Proof

Step Hyp Ref Expression
1 ivth.1 φ A
2 ivth.2 φ B
3 ivth.3 φ U
4 ivth.4 φ A < B
5 ivth.5 φ A B D
6 ivth.7 φ F : D cn
7 ivth.8 φ x A B F x
8 ivth.9 φ F A < U U < F B
9 fveq2 y = x F y = F x
10 9 breq1d y = x F y U F x U
11 10 cbvrabv y A B | F y U = x A B | F x U
12 eqid sup y A B | F y U < = sup y A B | F y U <
13 1 2 3 4 5 6 7 8 11 12 ivthlem3 φ sup y A B | F y U < A B F sup y A B | F y U < = U
14 fveqeq2 c = sup y A B | F y U < F c = U F sup y A B | F y U < = U
15 14 rspcev sup y A B | F y U < A B F sup y A B | F y U < = U c A B F c = U
16 13 15 syl φ c A B F c = U