| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
|
| 2 |
|
ivth.2 |
|
| 3 |
|
ivth.3 |
|
| 4 |
|
ivth.4 |
|
| 5 |
|
ivth.5 |
|
| 6 |
|
ivth.7 |
|
| 7 |
|
ivth.8 |
|
| 8 |
|
ivth2.9 |
|
| 9 |
3
|
renegcld |
|
| 10 |
|
eqid |
|
| 11 |
10
|
negfcncf |
|
| 12 |
6 11
|
syl |
|
| 13 |
5
|
sselda |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
negeqd |
|
| 16 |
|
negex |
|
| 17 |
15 10 16
|
fvmpt |
|
| 18 |
13 17
|
syl |
|
| 19 |
7
|
renegcld |
|
| 20 |
18 19
|
eqeltrd |
|
| 21 |
1
|
rexrd |
|
| 22 |
2
|
rexrd |
|
| 23 |
1 2 4
|
ltled |
|
| 24 |
|
lbicc2 |
|
| 25 |
21 22 23 24
|
syl3anc |
|
| 26 |
5 25
|
sseldd |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
negeqd |
|
| 29 |
|
negex |
|
| 30 |
28 10 29
|
fvmpt |
|
| 31 |
26 30
|
syl |
|
| 32 |
8
|
simprd |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
7
|
ralrimiva |
|
| 36 |
34 35 25
|
rspcdva |
|
| 37 |
3 36
|
ltnegd |
|
| 38 |
32 37
|
mpbid |
|
| 39 |
31 38
|
eqbrtrd |
|
| 40 |
8
|
simpld |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
eleq1d |
|
| 43 |
|
ubicc2 |
|
| 44 |
21 22 23 43
|
syl3anc |
|
| 45 |
42 35 44
|
rspcdva |
|
| 46 |
45 3
|
ltnegd |
|
| 47 |
40 46
|
mpbid |
|
| 48 |
5 44
|
sseldd |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
negeqd |
|
| 51 |
|
negex |
|
| 52 |
50 10 51
|
fvmpt |
|
| 53 |
48 52
|
syl |
|
| 54 |
47 53
|
breqtrrd |
|
| 55 |
39 54
|
jca |
|
| 56 |
1 2 9 4 5 12 20 55
|
ivth |
|
| 57 |
|
ioossicc |
|
| 58 |
57 5
|
sstrid |
|
| 59 |
58
|
sselda |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
negeqd |
|
| 62 |
|
negex |
|
| 63 |
61 10 62
|
fvmpt |
|
| 64 |
59 63
|
syl |
|
| 65 |
64
|
eqeq1d |
|
| 66 |
|
cncff |
|
| 67 |
6 66
|
syl |
|
| 68 |
67
|
ffvelcdmda |
|
| 69 |
59 68
|
syldan |
|
| 70 |
3
|
recnd |
|
| 71 |
70
|
adantr |
|
| 72 |
69 71
|
neg11ad |
|
| 73 |
65 72
|
bitrd |
|
| 74 |
73
|
rexbidva |
|
| 75 |
56 74
|
mpbid |
|