Step |
Hyp |
Ref |
Expression |
1 |
|
ivthicc.1 |
|
2 |
|
ivthicc.2 |
|
3 |
|
ivthicc.3 |
|
4 |
|
ivthicc.4 |
|
5 |
|
ivthicc.5 |
|
6 |
|
ivthicc.7 |
|
7 |
|
ivthicc.8 |
|
8 |
|
simpll |
|
9 |
|
elicc2 |
|
10 |
1 2 9
|
syl2anc |
|
11 |
3 10
|
mpbid |
|
12 |
11
|
simp1d |
|
13 |
12
|
ad2antrr |
|
14 |
|
elicc2 |
|
15 |
1 2 14
|
syl2anc |
|
16 |
4 15
|
mpbid |
|
17 |
16
|
simp1d |
|
18 |
17
|
ad2antrr |
|
19 |
|
fveq2 |
|
20 |
19
|
eleq1d |
|
21 |
7
|
ralrimiva |
|
22 |
20 21 3
|
rspcdva |
|
23 |
|
fveq2 |
|
24 |
23
|
eleq1d |
|
25 |
24 21 4
|
rspcdva |
|
26 |
|
iccssre |
|
27 |
22 25 26
|
syl2anc |
|
28 |
27
|
sselda |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
11
|
simp2d |
|
32 |
16
|
simp3d |
|
33 |
|
iccss |
|
34 |
1 2 31 32 33
|
syl22anc |
|
35 |
34 5
|
sstrd |
|
36 |
35
|
ad2antrr |
|
37 |
6
|
ad2antrr |
|
38 |
34
|
sselda |
|
39 |
38 7
|
syldan |
|
40 |
8 39
|
sylan |
|
41 |
|
elicc2 |
|
42 |
22 25 41
|
syl2anc |
|
43 |
42
|
biimpa |
|
44 |
|
3simpc |
|
45 |
43 44
|
syl |
|
46 |
45
|
adantr |
|
47 |
13 18 29 30 36 37 40 46
|
ivthle |
|
48 |
35
|
sselda |
|
49 |
|
cncff |
|
50 |
|
ffn |
|
51 |
6 49 50
|
3syl |
|
52 |
|
fnfvelrn |
|
53 |
51 52
|
sylan |
|
54 |
|
eleq1 |
|
55 |
53 54
|
syl5ibcom |
|
56 |
48 55
|
syldan |
|
57 |
56
|
rexlimdva |
|
58 |
8 47 57
|
sylc |
|
59 |
|
simplr |
|
60 |
|
simpr |
|
61 |
60
|
fveq2d |
|
62 |
61
|
oveq2d |
|
63 |
22
|
rexrd |
|
64 |
63
|
ad2antrr |
|
65 |
|
iccid |
|
66 |
64 65
|
syl |
|
67 |
62 66
|
eqtr3d |
|
68 |
59 67
|
eleqtrd |
|
69 |
|
elsni |
|
70 |
68 69
|
syl |
|
71 |
5 3
|
sseldd |
|
72 |
|
fnfvelrn |
|
73 |
51 71 72
|
syl2anc |
|
74 |
73
|
ad2antrr |
|
75 |
70 74
|
eqeltrd |
|
76 |
|
simpll |
|
77 |
17
|
ad2antrr |
|
78 |
12
|
ad2antrr |
|
79 |
28
|
adantr |
|
80 |
|
simpr |
|
81 |
16
|
simp2d |
|
82 |
11
|
simp3d |
|
83 |
|
iccss |
|
84 |
1 2 81 82 83
|
syl22anc |
|
85 |
84 5
|
sstrd |
|
86 |
85
|
ad2antrr |
|
87 |
6
|
ad2antrr |
|
88 |
84
|
sselda |
|
89 |
88 7
|
syldan |
|
90 |
76 89
|
sylan |
|
91 |
45
|
adantr |
|
92 |
77 78 79 80 86 87 90 91
|
ivthle2 |
|
93 |
85
|
sselda |
|
94 |
93 55
|
syldan |
|
95 |
94
|
rexlimdva |
|
96 |
76 92 95
|
sylc |
|
97 |
12 17
|
lttri4d |
|
98 |
97
|
adantr |
|
99 |
58 75 96 98
|
mpjao3dan |
|
100 |
99
|
ex |
|
101 |
100
|
ssrdv |
|