Metamath Proof Explorer


Theorem ivthle

Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ivth.1 φ A
ivth.2 φ B
ivth.3 φ U
ivth.4 φ A < B
ivth.5 φ A B D
ivth.7 φ F : D cn
ivth.8 φ x A B F x
ivthle.9 φ F A U U F B
Assertion ivthle φ c A B F c = U

Proof

Step Hyp Ref Expression
1 ivth.1 φ A
2 ivth.2 φ B
3 ivth.3 φ U
4 ivth.4 φ A < B
5 ivth.5 φ A B D
6 ivth.7 φ F : D cn
7 ivth.8 φ x A B F x
8 ivthle.9 φ F A U U F B
9 ioossicc A B A B
10 1 adantr φ F A < U U < F B A
11 2 adantr φ F A < U U < F B B
12 3 adantr φ F A < U U < F B U
13 4 adantr φ F A < U U < F B A < B
14 5 adantr φ F A < U U < F B A B D
15 6 adantr φ F A < U U < F B F : D cn
16 7 adantlr φ F A < U U < F B x A B F x
17 simpr φ F A < U U < F B F A < U U < F B
18 10 11 12 13 14 15 16 17 ivth φ F A < U U < F B c A B F c = U
19 ssrexv A B A B c A B F c = U c A B F c = U
20 9 18 19 mpsyl φ F A < U U < F B c A B F c = U
21 20 anassrs φ F A < U U < F B c A B F c = U
22 1 rexrd φ A *
23 2 rexrd φ B *
24 1 2 4 ltled φ A B
25 ubicc2 A * B * A B B A B
26 22 23 24 25 syl3anc φ B A B
27 eqcom F c = U U = F c
28 fveq2 c = B F c = F B
29 28 eqeq2d c = B U = F c U = F B
30 27 29 syl5bb c = B F c = U U = F B
31 30 rspcev B A B U = F B c A B F c = U
32 26 31 sylan φ U = F B c A B F c = U
33 32 adantlr φ F A < U U = F B c A B F c = U
34 8 simprd φ U F B
35 fveq2 x = B F x = F B
36 35 eleq1d x = B F x F B
37 7 ralrimiva φ x A B F x
38 36 37 26 rspcdva φ F B
39 3 38 leloed φ U F B U < F B U = F B
40 34 39 mpbid φ U < F B U = F B
41 40 adantr φ F A < U U < F B U = F B
42 21 33 41 mpjaodan φ F A < U c A B F c = U
43 lbicc2 A * B * A B A A B
44 22 23 24 43 syl3anc φ A A B
45 fveqeq2 c = A F c = U F A = U
46 45 rspcev A A B F A = U c A B F c = U
47 44 46 sylan φ F A = U c A B F c = U
48 8 simpld φ F A U
49 fveq2 x = A F x = F A
50 49 eleq1d x = A F x F A
51 50 37 44 rspcdva φ F A
52 51 3 leloed φ F A U F A < U F A = U
53 48 52 mpbid φ F A < U F A = U
54 42 47 53 mpjaodan φ c A B F c = U