Metamath Proof Explorer


Theorem ivthle2

Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses ivth.1 φ A
ivth.2 φ B
ivth.3 φ U
ivth.4 φ A < B
ivth.5 φ A B D
ivth.7 φ F : D cn
ivth.8 φ x A B F x
ivthle2.9 φ F B U U F A
Assertion ivthle2 φ c A B F c = U

Proof

Step Hyp Ref Expression
1 ivth.1 φ A
2 ivth.2 φ B
3 ivth.3 φ U
4 ivth.4 φ A < B
5 ivth.5 φ A B D
6 ivth.7 φ F : D cn
7 ivth.8 φ x A B F x
8 ivthle2.9 φ F B U U F A
9 ioossicc A B A B
10 1 adantr φ F B < U U < F A A
11 2 adantr φ F B < U U < F A B
12 3 adantr φ F B < U U < F A U
13 4 adantr φ F B < U U < F A A < B
14 5 adantr φ F B < U U < F A A B D
15 6 adantr φ F B < U U < F A F : D cn
16 7 adantlr φ F B < U U < F A x A B F x
17 simpr φ F B < U U < F A F B < U U < F A
18 10 11 12 13 14 15 16 17 ivth2 φ F B < U U < F A c A B F c = U
19 ssrexv A B A B c A B F c = U c A B F c = U
20 9 18 19 mpsyl φ F B < U U < F A c A B F c = U
21 20 anassrs φ F B < U U < F A c A B F c = U
22 1 rexrd φ A *
23 2 rexrd φ B *
24 1 2 4 ltled φ A B
25 lbicc2 A * B * A B A A B
26 22 23 24 25 syl3anc φ A A B
27 eqcom F c = U U = F c
28 fveq2 c = A F c = F A
29 28 eqeq2d c = A U = F c U = F A
30 27 29 syl5bb c = A F c = U U = F A
31 30 rspcev A A B U = F A c A B F c = U
32 26 31 sylan φ U = F A c A B F c = U
33 32 adantlr φ F B < U U = F A c A B F c = U
34 8 simprd φ U F A
35 fveq2 x = A F x = F A
36 35 eleq1d x = A F x F A
37 7 ralrimiva φ x A B F x
38 36 37 26 rspcdva φ F A
39 3 38 leloed φ U F A U < F A U = F A
40 34 39 mpbid φ U < F A U = F A
41 40 adantr φ F B < U U < F A U = F A
42 21 33 41 mpjaodan φ F B < U c A B F c = U
43 ubicc2 A * B * A B B A B
44 22 23 24 43 syl3anc φ B A B
45 fveqeq2 c = B F c = U F B = U
46 45 rspcev B A B F B = U c A B F c = U
47 44 46 sylan φ F B = U c A B F c = U
48 8 simpld φ F B U
49 fveq2 x = B F x = F B
50 49 eleq1d x = B F x F B
51 50 37 44 rspcdva φ F B
52 51 3 leloed φ F B U F B < U F B = U
53 48 52 mpbid φ F B < U F B = U
54 42 47 53 mpjaodan φ c A B F c = U