Metamath Proof Explorer


Theorem ivthlem1

Description: Lemma for ivth . The set S of all x values with ( Fx ) less than U is lower bounded by A and upper bounded by B . (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ivth.1 φ A
ivth.2 φ B
ivth.3 φ U
ivth.4 φ A < B
ivth.5 φ A B D
ivth.7 φ F : D cn
ivth.8 φ x A B F x
ivth.9 φ F A < U U < F B
ivth.10 S = x A B | F x U
Assertion ivthlem1 φ A S z S z B

Proof

Step Hyp Ref Expression
1 ivth.1 φ A
2 ivth.2 φ B
3 ivth.3 φ U
4 ivth.4 φ A < B
5 ivth.5 φ A B D
6 ivth.7 φ F : D cn
7 ivth.8 φ x A B F x
8 ivth.9 φ F A < U U < F B
9 ivth.10 S = x A B | F x U
10 1 rexrd φ A *
11 2 rexrd φ B *
12 1 2 4 ltled φ A B
13 lbicc2 A * B * A B A A B
14 10 11 12 13 syl3anc φ A A B
15 fveq2 x = A F x = F A
16 15 eleq1d x = A F x F A
17 7 ralrimiva φ x A B F x
18 16 17 14 rspcdva φ F A
19 8 simpld φ F A < U
20 18 3 19 ltled φ F A U
21 15 breq1d x = A F x U F A U
22 21 9 elrab2 A S A A B F A U
23 14 20 22 sylanbrc φ A S
24 9 ssrab3 S A B
25 24 sseli z S z A B
26 iccleub A * B * z A B z B
27 26 3expia A * B * z A B z B
28 10 11 27 syl2anc φ z A B z B
29 25 28 syl5 φ z S z B
30 29 ralrimiv φ z S z B
31 23 30 jca φ A S z S z B