Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|
2 |
|
ivth.2 |
|
3 |
|
ivth.3 |
|
4 |
|
ivth.4 |
|
5 |
|
ivth.5 |
|
6 |
|
ivth.7 |
|
7 |
|
ivth.8 |
|
8 |
|
ivth.9 |
|
9 |
|
ivth.10 |
|
10 |
|
ivth.11 |
|
11 |
6
|
adantr |
|
12 |
9
|
ssrab3 |
|
13 |
|
iccssre |
|
14 |
1 2 13
|
syl2anc |
|
15 |
12 14
|
sstrid |
|
16 |
1 2 3 4 5 6 7 8 9
|
ivthlem1 |
|
17 |
16
|
simpld |
|
18 |
17
|
ne0d |
|
19 |
16
|
simprd |
|
20 |
|
brralrspcev |
|
21 |
2 19 20
|
syl2anc |
|
22 |
15 18 21
|
suprcld |
|
23 |
10 22
|
eqeltrid |
|
24 |
15 18 21 17
|
suprubd |
|
25 |
24 10
|
breqtrrdi |
|
26 |
15 18 21
|
3jca |
|
27 |
|
suprleub |
|
28 |
26 2 27
|
syl2anc |
|
29 |
19 28
|
mpbird |
|
30 |
10 29
|
eqbrtrid |
|
31 |
|
elicc2 |
|
32 |
1 2 31
|
syl2anc |
|
33 |
23 25 30 32
|
mpbir3and |
|
34 |
5 33
|
sseldd |
|
35 |
34
|
adantr |
|
36 |
|
fveq2 |
|
37 |
36
|
eleq1d |
|
38 |
7
|
ralrimiva |
|
39 |
37 38 33
|
rspcdva |
|
40 |
|
difrp |
|
41 |
39 3 40
|
syl2anc |
|
42 |
41
|
biimpa |
|
43 |
|
cncfi |
|
44 |
11 35 42 43
|
syl3anc |
|
45 |
|
ssralv |
|
46 |
5 45
|
syl |
|
47 |
46
|
ad2antrr |
|
48 |
2
|
ad2antrr |
|
49 |
23
|
ad2antrr |
|
50 |
|
rphalfcl |
|
51 |
50
|
adantl |
|
52 |
51
|
rpred |
|
53 |
49 52
|
readdcld |
|
54 |
48 53
|
ifcld |
|
55 |
1
|
ad2antrr |
|
56 |
25
|
ad2antrr |
|
57 |
8
|
simprd |
|
58 |
|
fveq2 |
|
59 |
58
|
eleq1d |
|
60 |
1
|
rexrd |
|
61 |
2
|
rexrd |
|
62 |
1 2 4
|
ltled |
|
63 |
|
ubicc2 |
|
64 |
60 61 62 63
|
syl3anc |
|
65 |
59 38 64
|
rspcdva |
|
66 |
|
lttr |
|
67 |
39 3 65 66
|
syl3anc |
|
68 |
57 67
|
mpan2d |
|
69 |
68
|
imp |
|
70 |
69
|
adantr |
|
71 |
39
|
ltnrd |
|
72 |
|
fveq2 |
|
73 |
72
|
breq2d |
|
74 |
73
|
notbid |
|
75 |
71 74
|
syl5ibrcom |
|
76 |
75
|
necon2ad |
|
77 |
76 30
|
jctild |
|
78 |
23 2
|
ltlend |
|
79 |
77 78
|
sylibrd |
|
80 |
79
|
ad2antrr |
|
81 |
70 80
|
mpd |
|
82 |
49 51
|
ltaddrpd |
|
83 |
|
breq2 |
|
84 |
|
breq2 |
|
85 |
83 84
|
ifboth |
|
86 |
81 82 85
|
syl2anc |
|
87 |
49 54 86
|
ltled |
|
88 |
55 49 54 56 87
|
letrd |
|
89 |
|
min1 |
|
90 |
48 53 89
|
syl2anc |
|
91 |
|
elicc2 |
|
92 |
1 2 91
|
syl2anc |
|
93 |
92
|
ad2antrr |
|
94 |
54 88 90 93
|
mpbir3and |
|
95 |
49 54 87
|
abssubge0d |
|
96 |
|
rpre |
|
97 |
96
|
adantl |
|
98 |
49 97
|
readdcld |
|
99 |
|
min2 |
|
100 |
48 53 99
|
syl2anc |
|
101 |
|
rphalflt |
|
102 |
101
|
adantl |
|
103 |
52 97 49 102
|
ltadd2dd |
|
104 |
54 53 98 100 103
|
lelttrd |
|
105 |
54 49 97
|
ltsubadd2d |
|
106 |
104 105
|
mpbird |
|
107 |
95 106
|
eqbrtrd |
|
108 |
|
fvoveq1 |
|
109 |
108
|
breq1d |
|
110 |
|
breq2 |
|
111 |
109 110
|
anbi12d |
|
112 |
111
|
rspcev |
|
113 |
94 107 86 112
|
syl12anc |
|
114 |
|
r19.29 |
|
115 |
|
pm3.45 |
|
116 |
115
|
imp |
|
117 |
|
simprr |
|
118 |
|
fveq2 |
|
119 |
118
|
eleq1d |
|
120 |
|
simplll |
|
121 |
120 38
|
syl |
|
122 |
|
simprl |
|
123 |
119 121 122
|
rspcdva |
|
124 |
120 39
|
syl |
|
125 |
120 3
|
syl |
|
126 |
125 124
|
resubcld |
|
127 |
123 124 126
|
absdifltd |
|
128 |
|
ltle |
|
129 |
123 125 128
|
syl2anc |
|
130 |
124
|
recnd |
|
131 |
125
|
recnd |
|
132 |
130 131
|
pncan3d |
|
133 |
132
|
breq2d |
|
134 |
118
|
breq1d |
|
135 |
134 9
|
elrab2 |
|
136 |
135
|
baib |
|
137 |
136
|
ad2antrl |
|
138 |
129 133 137
|
3imtr4d |
|
139 |
|
suprub |
|
140 |
139 10
|
breqtrrdi |
|
141 |
140
|
ex |
|
142 |
120 26 141
|
3syl |
|
143 |
120 14
|
syl |
|
144 |
143 122
|
sseldd |
|
145 |
120 23
|
syl |
|
146 |
144 145
|
lenltd |
|
147 |
142 146
|
sylibd |
|
148 |
138 147
|
syld |
|
149 |
148
|
adantld |
|
150 |
127 149
|
sylbid |
|
151 |
117 150
|
mt2d |
|
152 |
151
|
pm2.21d |
|
153 |
152
|
expr |
|
154 |
153
|
impcomd |
|
155 |
116 154
|
syl5 |
|
156 |
155
|
rexlimdva |
|
157 |
114 156
|
syl5 |
|
158 |
113 157
|
mpan2d |
|
159 |
47 158
|
syld |
|
160 |
159
|
rexlimdva |
|
161 |
44 160
|
mpd |
|
162 |
161
|
pm2.01da |
|