Step |
Hyp |
Ref |
Expression |
1 |
|
ivth.1 |
|
2 |
|
ivth.2 |
|
3 |
|
ivth.3 |
|
4 |
|
ivth.4 |
|
5 |
|
ivth.5 |
|
6 |
|
ivth.7 |
|
7 |
|
ivth.8 |
|
8 |
|
ivth.9 |
|
9 |
|
ivth.10 |
|
10 |
|
ivth.11 |
|
11 |
9
|
ssrab3 |
|
12 |
|
iccssre |
|
13 |
1 2 12
|
syl2anc |
|
14 |
11 13
|
sstrid |
|
15 |
1 2 3 4 5 6 7 8 9
|
ivthlem1 |
|
16 |
15
|
simpld |
|
17 |
16
|
ne0d |
|
18 |
15
|
simprd |
|
19 |
|
brralrspcev |
|
20 |
2 18 19
|
syl2anc |
|
21 |
14 17 20
|
suprcld |
|
22 |
10 21
|
eqeltrid |
|
23 |
8
|
simpld |
|
24 |
1 2 3 4 5 6 7 8 9 10
|
ivthlem2 |
|
25 |
6
|
adantr |
|
26 |
14 17 20 16
|
suprubd |
|
27 |
26 10
|
breqtrrdi |
|
28 |
14 17 20
|
3jca |
|
29 |
|
suprleub |
|
30 |
28 2 29
|
syl2anc |
|
31 |
18 30
|
mpbird |
|
32 |
10 31
|
eqbrtrid |
|
33 |
|
elicc2 |
|
34 |
1 2 33
|
syl2anc |
|
35 |
22 27 32 34
|
mpbir3and |
|
36 |
5 35
|
sseldd |
|
37 |
36
|
adantr |
|
38 |
|
fveq2 |
|
39 |
38
|
eleq1d |
|
40 |
7
|
ralrimiva |
|
41 |
39 40 35
|
rspcdva |
|
42 |
|
difrp |
|
43 |
3 41 42
|
syl2anc |
|
44 |
43
|
biimpa |
|
45 |
|
cncfi |
|
46 |
25 37 44 45
|
syl3anc |
|
47 |
|
ssralv |
|
48 |
5 47
|
syl |
|
49 |
48
|
ad2antrr |
|
50 |
22
|
ad2antrr |
|
51 |
|
ltsubrp |
|
52 |
50 51
|
sylancom |
|
53 |
52 10
|
breqtrdi |
|
54 |
28
|
ad2antrr |
|
55 |
|
rpre |
|
56 |
55
|
adantl |
|
57 |
50 56
|
resubcld |
|
58 |
|
suprlub |
|
59 |
54 57 58
|
syl2anc |
|
60 |
53 59
|
mpbid |
|
61 |
11
|
sseli |
|
62 |
61
|
ad2antrl |
|
63 |
|
simplll |
|
64 |
63 13
|
syl |
|
65 |
64 62
|
sseldd |
|
66 |
63 22
|
syl |
|
67 |
63 28
|
syl |
|
68 |
|
simprl |
|
69 |
|
suprub |
|
70 |
67 68 69
|
syl2anc |
|
71 |
70 10
|
breqtrrdi |
|
72 |
65 66 71
|
abssuble0d |
|
73 |
56
|
adantr |
|
74 |
|
simprr |
|
75 |
66 73 65 74
|
ltsub23d |
|
76 |
72 75
|
eqbrtrd |
|
77 |
62 76 68
|
jca32 |
|
78 |
77
|
ex |
|
79 |
78
|
reximdv2 |
|
80 |
60 79
|
mpd |
|
81 |
|
r19.29 |
|
82 |
|
pm3.45 |
|
83 |
82
|
imp |
|
84 |
|
fveq2 |
|
85 |
84
|
eleq1d |
|
86 |
40
|
ad2antrr |
|
87 |
61
|
ad2antll |
|
88 |
85 86 87
|
rspcdva |
|
89 |
41
|
ad2antrr |
|
90 |
3
|
ad2antrr |
|
91 |
89 90
|
resubcld |
|
92 |
88 89 91
|
absdifltd |
|
93 |
89
|
recnd |
|
94 |
90
|
recnd |
|
95 |
93 94
|
nncand |
|
96 |
95
|
breq1d |
|
97 |
84
|
breq1d |
|
98 |
97 9
|
elrab2 |
|
99 |
98
|
simprbi |
|
100 |
99
|
ad2antll |
|
101 |
88 90 100
|
lensymd |
|
102 |
101
|
pm2.21d |
|
103 |
96 102
|
sylbid |
|
104 |
103
|
adantrd |
|
105 |
92 104
|
sylbid |
|
106 |
105
|
expr |
|
107 |
106
|
impcomd |
|
108 |
107
|
adantr |
|
109 |
83 108
|
syl5 |
|
110 |
109
|
rexlimdva |
|
111 |
81 110
|
syl5 |
|
112 |
80 111
|
mpan2d |
|
113 |
49 112
|
syld |
|
114 |
113
|
rexlimdva |
|
115 |
46 114
|
mpd |
|
116 |
115
|
pm2.01da |
|
117 |
41 3
|
lttri3d |
|
118 |
24 116 117
|
mpbir2and |
|
119 |
23 118
|
breqtrrd |
|
120 |
41
|
ltnrd |
|
121 |
|
fveq2 |
|
122 |
121
|
breq1d |
|
123 |
122
|
notbid |
|
124 |
120 123
|
syl5ibcom |
|
125 |
124
|
necon2ad |
|
126 |
125 27
|
jctild |
|
127 |
1 22
|
ltlend |
|
128 |
126 127
|
sylibrd |
|
129 |
119 128
|
mpd |
|
130 |
8
|
simprd |
|
131 |
118 130
|
eqbrtrd |
|
132 |
|
fveq2 |
|
133 |
132
|
breq2d |
|
134 |
133
|
notbid |
|
135 |
120 134
|
syl5ibrcom |
|
136 |
135
|
necon2ad |
|
137 |
136 32
|
jctild |
|
138 |
22 2
|
ltlend |
|
139 |
137 138
|
sylibrd |
|
140 |
131 139
|
mpd |
|
141 |
1
|
rexrd |
|
142 |
2
|
rexrd |
|
143 |
|
elioo2 |
|
144 |
141 142 143
|
syl2anc |
|
145 |
22 129 140 144
|
mpbir3and |
|
146 |
145 118
|
jca |
|