Metamath Proof Explorer


Theorem ixi

Description: _i times itself is minus 1. (Contributed by NM, 6-May-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ixi i i = 1

Proof

Step Hyp Ref Expression
1 df-neg 1 = 0 1
2 ax-i2m1 i i + 1 = 0
3 0cn 0
4 ax-1cn 1
5 ax-icn i
6 5 5 mulcli i i
7 3 4 6 subadd2i 0 1 = i i i i + 1 = 0
8 2 7 mpbir 0 1 = i i
9 1 8 eqtr2i i i = 1