Metamath Proof Explorer


Theorem ixp0x

Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007)

Ref Expression
Assertion ixp0x xA=

Proof

Step Hyp Ref Expression
1 dfixp xA=f|fFnxfxA
2 velsn ff=
3 fn0 fFnf=
4 ral0 xfxA
5 4 biantru fFnfFnxfxA
6 2 3 5 3bitr2i ffFnxfxA
7 6 eqabi =f|fFnxfxA
8 1 7 eqtr4i xA=