Metamath Proof Explorer


Theorem ixpconst

Description: Infinite Cartesian product of a constant B . (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypotheses ixpconst.1 A V
ixpconst.2 B V
Assertion ixpconst x A B = B A

Proof

Step Hyp Ref Expression
1 ixpconst.1 A V
2 ixpconst.2 B V
3 ixpconstg A V B V x A B = B A
4 1 2 3 mp2an x A B = B A