Metamath Proof Explorer


Theorem ixpconstg

Description: Infinite Cartesian product of a constant B . (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Assertion ixpconstg A V B W x A B = B A

Proof

Step Hyp Ref Expression
1 vex f V
2 1 elixpconst f x A B f : A B
3 2 abbi2i x A B = f | f : A B
4 mapvalg B W A V B A = f | f : A B
5 3 4 eqtr4id B W A V x A B = B A
6 5 ancoms A V B W x A B = B A