Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Infinite Cartesian products
ixpeq1
Next ⟩
ixpeq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
ixpeq1
Description:
Equality theorem for infinite Cartesian product.
(Contributed by
NM
, 29-Sep-2006)
Ref
Expression
Assertion
ixpeq1
⊢
A
=
B
→
⨉
x
∈
A
C
=
⨉
x
∈
B
C
Proof
Step
Hyp
Ref
Expression
1
fneq2
⊢
A
=
B
→
f
Fn
A
↔
f
Fn
B
2
raleq
⊢
A
=
B
→
∀
x
∈
A
f
⁡
x
∈
C
↔
∀
x
∈
B
f
⁡
x
∈
C
3
1
2
anbi12d
⊢
A
=
B
→
f
Fn
A
∧
∀
x
∈
A
f
⁡
x
∈
C
↔
f
Fn
B
∧
∀
x
∈
B
f
⁡
x
∈
C
4
3
abbidv
⊢
A
=
B
→
f
|
f
Fn
A
∧
∀
x
∈
A
f
⁡
x
∈
C
=
f
|
f
Fn
B
∧
∀
x
∈
B
f
⁡
x
∈
C
5
dfixp
⊢
⨉
x
∈
A
C
=
f
|
f
Fn
A
∧
∀
x
∈
A
f
⁡
x
∈
C
6
dfixp
⊢
⨉
x
∈
B
C
=
f
|
f
Fn
B
∧
∀
x
∈
B
f
⁡
x
∈
C
7
4
5
6
3eqtr4g
⊢
A
=
B
→
⨉
x
∈
A
C
=
⨉
x
∈
B
C