Metamath Proof Explorer


Theorem ixpeq2

Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)

Ref Expression
Assertion ixpeq2 x A B = C x A B = x A C

Proof

Step Hyp Ref Expression
1 ss2ixp x A B C x A B x A C
2 ss2ixp x A C B x A C x A B
3 1 2 anim12i x A B C x A C B x A B x A C x A C x A B
4 eqss B = C B C C B
5 4 ralbii x A B = C x A B C C B
6 r19.26 x A B C C B x A B C x A C B
7 5 6 bitri x A B = C x A B C x A C B
8 eqss x A B = x A C x A B x A C x A C x A B
9 3 7 8 3imtr4i x A B = C x A B = x A C