Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Infinite Cartesian products
ixpeq2
Next ⟩
ixpeq2dva
Metamath Proof Explorer
Ascii
Unicode
Theorem
ixpeq2
Description:
Equality theorem for infinite Cartesian product.
(Contributed by
NM
, 29-Sep-2006)
Ref
Expression
Assertion
ixpeq2
⊢
∀
x
∈
A
B
=
C
→
⨉
x
∈
A
B
=
⨉
x
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
ss2ixp
⊢
∀
x
∈
A
B
⊆
C
→
⨉
x
∈
A
B
⊆
⨉
x
∈
A
C
2
ss2ixp
⊢
∀
x
∈
A
C
⊆
B
→
⨉
x
∈
A
C
⊆
⨉
x
∈
A
B
3
1
2
anim12i
⊢
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
→
⨉
x
∈
A
B
⊆
⨉
x
∈
A
C
∧
⨉
x
∈
A
C
⊆
⨉
x
∈
A
B
4
eqss
⊢
B
=
C
↔
B
⊆
C
∧
C
⊆
B
5
4
ralbii
⊢
∀
x
∈
A
B
=
C
↔
∀
x
∈
A
B
⊆
C
∧
C
⊆
B
6
r19.26
⊢
∀
x
∈
A
B
⊆
C
∧
C
⊆
B
↔
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
7
5
6
bitri
⊢
∀
x
∈
A
B
=
C
↔
∀
x
∈
A
B
⊆
C
∧
∀
x
∈
A
C
⊆
B
8
eqss
⊢
⨉
x
∈
A
B
=
⨉
x
∈
A
C
↔
⨉
x
∈
A
B
⊆
⨉
x
∈
A
C
∧
⨉
x
∈
A
C
⊆
⨉
x
∈
A
B
9
3
7
8
3imtr4i
⊢
∀
x
∈
A
B
=
C
→
⨉
x
∈
A
B
=
⨉
x
∈
A
C